• 散射矩阵层析成像技术:突破复杂介质限制的深层高分辨率光学成像新范式

    近日,美国南加州大学ChiaWei(Wade)Hsu教授团队联合浙江大学研究人员,提出一种名为“散射矩阵层析成像(ScatteringMatrixTomography,SMT)”的创新光学成像技术,成功破解了复杂散射介质下深层成像的难题。相关研究成果发表于国际顶尖光学期刊《AdvancedPhotonics》。

    0 2025-09-18
  • 运送一台EUV光刻机,比送宇航员上太空还难?背后藏着纳米光学的“生死考验”

    在芯片产业的版图里,EUV光刻机是当之无愧的“皇冠明珠”——一台售价超1.5亿美元,全球每年仅能产出数十台,却支撑着7纳米以下先进制程芯片的生产。可很少有人知道,这台“精密神器”从荷兰ASML工厂出发,到抵达全球各地芯片厂的这段旅程,比护送宇航员进入太空还要严苛。毕竟,宇航员能在太空中适应微小重力波动,而EUV光刻机却连0.001G的震动都“承受不起”,根源就藏在那些中频误差<0.3nm的光学镜片里。

    2 2025-09-18
  • 3D打印技术如何驱动功能性光学器件制造革新及应用拓展

    传统制造工艺正面临前所未有的技术瓶颈——先进光学器件对三维结构复杂性与多材料精准分布的需求,已超出切削、注塑等传统制造手段的加工范畴,成为制约光学技术在成像、传感、显示等领域突破的核心障碍。增材制造(又称3D打印)技术凭借“分层制造、逐层叠加”的核心原理,为功能性光学器件的创新研发提供了全新技术路径。从纳米级微透镜到宏观光学系统,从单一材料结构到多材料复合器件,3D打印技术正逐步打破传统光学制造的边界,推动光学器件产业进入“设计驱动制造”的全新发展阶段。

    1 2025-09-18
  • 警惕“100倍变焦”宣传陷阱,光学与数字变焦的技术解析及选购指南

    在选购相机、智能手机或摄像机等影像设备时,厂商所宣传的“50倍超级变焦”“100倍高清变焦”常成为核心卖点,易让消费者产生“高倍变焦即优质成像”的认知。然而实际使用中,部分高倍变焦功能的成像效果与预期存在显著差距,其根源在于“光学变焦”与“数字变焦”的本质差异被混淆。本文将从技术原理、核心区别、选购策略及实用技巧四方面,系统解析两种变焦技术,助力消费者避开选购陷阱,提升影像创作质量。

    3 2025-09-18
  • 二向色镜角度偏差对分光效果的影响及机制分析

    在荧光显微镜实验、激光系统搭建及投影技术应用中,常出现成像信噪比骤降、激发光与发射光串扰、光束合成精度不足等问题。经排查,若滤光片、光源等核心部件无异常,问题往往源于二向色镜安装角度的偏差。作为光学系统中实现精准分光的核心元件,二向色镜的角度偏差即便仅为几度,也可能打破光路设计预期,导致系统性能下降甚至实验数据失真。本文将系统阐述二向色镜的工作原理,深入分析角度偏差对其分光效果的影响机制,并提出应用中的关键控制策略。

    2 2025-09-17
  • 共聚焦显微镜:以“点照明+三维成像”核心技术突破传统局限,赋能半导体、锂电等关键领域微观检测升级

    微观检测领域,实现微观层面的精准观测始终是核心诉求。从半导体芯片表面的纳米级划痕,到锂电池电极内部活性材料的分布状态,再到航天涡轮叶片隐藏的微观疲劳裂纹,传统宽场显微镜因“泛光照明”机制存在的成像模糊、对比度低等固有缺陷,长期制约着精密观测精度的提升。共聚焦显微镜凭借“精准点照明+三维成像”的独特技术机制,为微观世界观测提供了高清解决方案,已成为半导体、锂电、光伏、航天航空等关键行业不可或缺的精密光学检测设备。

    3 2025-09-17
  • 局部对称为何是破解非对称光学系统设计困局的核心逻辑?

    在高倍显微物镜观测细胞细微结构、激光投影镜头实现远距离清晰成像的过程中,这类高性能光学系统普遍面临一项“先天挑战”——孔径光阑与透镜组的非共轴布局,使系统天然具备非对称特性。这种结构导致光线在系统内的传播路径失去对称平衡,彗差、像散、场曲等影响成像质量的像差随之产生;从工程设计角度看,这类系统的优化涉及大量设计变量,且变量间相互关联紧密,直接进行全局优化不仅计算效率低下,还易出现算法无法收敛或设计方案不符合实际加工要求的问题。

    2 2025-09-17
  • 拍瓦级激光脉冲单次时空矢量场测量技术,突破超强激光表征瓶颈的关键进展

    当激光强度迈入拍瓦量级(1拍瓦=10¹⁵瓦),电子可在单个光学周期内以相对论速度振荡。这一极端物理条件,使超强激光成为探索光物质相互作用基本规律、推动粒子加速、激光驱动聚变等前沿领域发展的核心工具。然而,长期以来,超强激光的精准表征能力显著滞后于其产生技术的进步,成为制约激光科学及其应用突破的关键瓶颈。直至SunnyHoward团队在《NaturePhotonics》发表创新性研究成果,提出“实时矢量电磁近场表征技术”,首次实现对超强激光脉冲完整时空与偏振信息的单次测量,才为这一领域的发展开辟了新路径。

    2 2025-09-17

推荐文章