• 从毫瓦到兆瓦,激光器的功率边界究竟有多广?

    小到手机3D面部识别,大到舰载防空反导、惯性约束聚变,激光器的功率跨度从毫瓦级延伸至兆瓦级,其应用早已渗透到消费电子、医疗健康、工业制造、国防科技等各个核心领域。本文以固态、气态、半导体三大物态激光器为基础,按功率梯度划分五大区间,清晰呈现不同功率段激光器的主流类型、应用原理与典型场景,助力快速定位适配技术路线。

    0 2025-12-25
  • 新型片上光学相位调制器问世 破解大规模量子计算扩展瓶颈

    具备可扩展平台的光学相位调制器是实现大规模量子计算的核心器件。量子计算机需通过数千乃至数百万个独立通道对每个量子比特进行精准操控,这就要求光学相位调制器同时满足规模化制备与高性能的核心需求。近日,美国科罗拉多大学博尔德分校研究人员与桑迪亚国家实验室合作,成功研制出一款芯片集成式光学相位调制器。该器件在维持高效调制性能的前提下,可实现高光学功率处理,且基于主流互补金属氧化物半导体(CMOS)微电子制造技术制备,为大规模量子计算的工程化实现提供了突破性解决方案。相关研究成果已发表于《自然·通讯》(Nature Communications)期刊。

    0 2025-12-25
  • 超材料行业2025年技术突破与市场发展全景分析

    超材料作为通过人工设计微纳结构突破天然材料物理极限的功能性复合材料,其超常的电磁、力学、热学等核心性能,推动其成为新材料领域的核心发展方向。2025年,该领域实现多项关键技术突破,AI驱动研发模式革新、第四代产品性能跃升,推动应用场景从国防军工向民用领域广泛延伸。本文基于行业权威数据,系统分析超材料技术发展现状、应用拓展态势及市场增长前景,为行业研究与决策提供参考。

    2 2025-12-25
  • 2025中国光学产业重要进展:从技术突围到全球领跑,多赛道构建高质量发展新格局

    2025年,中国光学产业正式迈入“技术突破-规模量产-生态协同”的高质量发展新阶段。在国家政策与市场需求的双重驱动下,光子芯片、光学存储、激光装备、卫星间光通信等核心领域实现产业化关键跨越,AI眼镜光学显示、量子光学等新兴赛道加速崛起,产业集群效应凸显,不仅推动国内市场规模持续扩容,更在全球竞争中确立了“中国坐标”。从无锡的光子芯片生产线到武汉光谷的激光云平台,从低轨卫星的激光链路到消费端的AI眼镜光波导,中国光学正以全链条创新能力,重塑全球光电产业格局。

    10 2025-12-24
  • 光谱分辨率的核心定义是什么?术语关联、本质解析与测量影响

    决定光谱仪分析精度与识别能力的关键性能指标,正是光谱分辨率。它如同光谱仪的“火眼金睛”,直接决定了仪器能否从复杂的光谱信号中区分出相近波长的辐射,解锁物质背后的精准信息。

    6 2025-12-24
  • 【前沿资讯】时空涡旋脉冲技术迎来多点突破赋能光通信、量子信息等多领域创新

    近期,国内外科研团队在时空涡旋脉冲(STOV)这一新型光场调控领域密集取得突破性进展。作为携带横向轨道角动量(T-OAM)的特殊光波包,时空涡旋脉冲因在光-物质相互作用、高维量子纠缠、大容量光通信等领域的巨大应用潜力,一直是光学研究的前沿方向。从定制化脉冲簇生成到创新调控技术研发,再到跨体系应用拓展,一系列成果为该领域发展注入强劲动力,相关研究分别发表于《Light:Science&Applications》《物理评论快报》(PhysicalReviewLetters)《科学进展》(ScienceAdvances)等国际顶级期刊。

    5 2025-12-24
  • 光学玻璃与普通玻璃有什么区别?不止透明的天壤之别

    玻璃,早已融入人类生活的方方面面——清晨透过窗户洒进房间的阳光,办公桌上盛放茶水的水杯,手机屏幕上清晰的画面,显微镜下微观世界的奥秘,这些场景中都离不开玻璃的身影。但很少有人留意,窗户上的平板玻璃与相机镜头里的特殊玻璃,看似同为“透明材质”,实则存在从内到外的本质差异。光学玻璃与普通玻璃,早已在成分、功能、工艺与应用中,走出了两条截然不同的道路。

    2 2025-12-23
  • 如何利用TriAngle实现高精度平面度测量?

    TriAngle 自准直仪基于激光三角测量法与多测点拟合算法,通过激光发射器向被测平面发射高精度激光束,激光经平面反射后被高分辨率图像传感器接收,形成位移信号。系统通过计算激光发射与接收的角度偏差,结合三角几何关系,精准获取被测点的三维坐标数据;再对多个采样点的坐标信息进行最小二乘拟合、平面度误差评定(如最大与最小点差值、平面度偏差值),最终输出被测平面的平面度参数。

    1 2025-12-23

推荐文章