光子穿透人脑?深层成像技术突破“不可能”之限
大脑作为调控人类思维与行为的核心中枢,其深层运作机制长期以来因组织结构的包裹而难以被解析,宛如一座待解的迷宫。近日,英国格拉斯哥大学研究团队在《Neurophotonics》发表的突破性成果,首次实现光子穿透成人大脑并完成深层成像,一举打破了困扰学界数十年的衰减壁垒,为脑科学研究及临床诊断领域开辟了全新路径。
一.脑成像技术的现存局限与突破性进展
当前主流脑成像技术普遍面临“精度-成本-便携性”难以兼顾的困境:脑电图虽具备成本低廉、便携性强的优势,但分辨率不足;核磁共振成像空间分辨率较高,却因建设成本高昂而难以普及。对于中风、脑损伤、脑肿瘤等疾病,早期诊断与实时监测的需求迫切,这要求诊断设备同时具备探测精度、成本优势及便携性。
近年来,以多光子成像为代表的散射成像技术虽在成本与精度间取得一定平衡,却受限于光子衰减问题,无法对大脑深层结构进行有效探测。依据传统理论计算,光子穿透成年人头颅需克服10⁵³量级的衰减,这一数值被学界公认为“不可能完成的任务”。而英国格拉斯哥大学研究团队的成果,通过发现脑组织中光子的低衰减传播路径,使这一“不可能”成为现实——实验证实,光子沿特定轨迹传播时,衰减可降至10¹⁸量级,为深层脑成像提供了核心技术支撑。
二.理论模拟与实验验证的系统性突破
研究团队基于蒙特卡洛射线追踪方法,构建了包含头皮、颅骨、脑脊液、灰质等六层结构的头部体积网络模型,并结合810nm波段下各组织已知的光学系数,对光子在脑组织中的传播轨迹与衰减规律进行了精准模拟。模拟结果显示,当光子沿脑脊液等低散射、低吸收区域传播时,能量衰减显著降低,为实验设计提供了关键理论依据。
为验证模拟结论,团队构建了高灵敏度实验系统:采用1.2W、800nm波长的飞秒激光(重复频率80MHz),经扩束至1英寸后照射志愿者头部一侧,对侧部署光电倍增管探测器,通过时间相关单光子计数技术记录光子飞行时间分布。实验结果表明,探测器成功捕捉到穿透15.5cm全脑的光子,其飞行时间分布与模拟结果在峰值延迟及分布宽度上高度吻合,直接证实了光子沿预期路径穿越脑组织的可行性。
值得关注的是,实验中每秒仅能探测到1个光子,信号虽微弱,却为“光子可穿透成人大脑”提供了直接证据,颠覆了学界此前的认知。进一步研究显示,通过优化光源与探测器的空间位置,可实现对大脑不同区域的选择性探测,为靶向成像技术的开发奠定了基础。
三.临床转化的潜在价值与应用前景
尽管当前实验存在数据采集耗时较长(每组数据需30分钟)的局限,但其为下一代功能性近红外光谱技术的发展提供了核心思路。若未来能提升探测效率,有望开发出无创、便携、低成本的深层脑成像设备,填补现有诊断技术的空白。
在医疗资源匮乏地区,该技术可替代昂贵的核磁共振或CT设备,成为脑疾病筛查的重要工具;对于中风患者,通过实时监测大脑深层血氧变化,可提前发现发病迹象,为及时治疗争取宝贵时间;在脑肿瘤诊疗中,精准的深层成像有助于医生明确病灶边界,提升手术精准度。
从突破理论禁区到实现实验验证,光子穿透人脑的成果不仅刷新了光学成像的技术极限,更推动人类向破解大脑深层功能密码的目标迈进了关键一步。随着技术的持续迭代,无创、精准的深层脑成像有望从实验室走向临床实践,为脑健康诊疗领域开辟全新维度。
-
MIT突破光电芯片封装技术难题:引领下一代计算与通信产业变革
在全球数据流量呈指数级增长的背景下,如何实现光子芯片与电子芯片在单一封装内的高效集成,已成为制约下一代计算与通信技术规模化发展的核心议题。麻省理工学院(MIT)材料科学与工程系ThomasLord讲席教授、微光子学中心主任LionelKimerling指出:“在单一封装内达成光子学与电子学的集成,其战略意义堪比21世纪的‘晶体管’技术。若无法攻克这一核心挑战,该领域的大规模产业化进程将无从推进。”为应对此挑战,MIT新组建了由美国国家科学基金会资助的FUTUR-IC研究团队,项目负责人、MIT材料研究实验室首席研究科学家AnuAgarwal明确表示:“团队的核心目标是构建资源高效的微芯片产业价值链,为行业发展提供底层技术支撑。”
2025-08-29
-
超精密光学镜片的关键制备环节:精密光学镀膜技术的核心价值与应用分析
在超精密光学镜片的全生命周期制造流程中,材料筛选构建基础性能、精密加工保障几何精度、专业测试验证产品质量,而光学镀膜作为最终工序,堪称实现镜片性能跃升的“关键一跃”。该工序并非简单的表面覆盖处理,而是通过在原子尺度上精准调控膜层厚度、材料组成及微观结构,使加工完成的基片满足最终光学系统对超高透射率、超高反射率、特定分光比及极端环境稳定性等核心指标的要求。当前,超精密光学镀膜技术已形成多技术路径并行发展的格局,各技术体系在性能、成本及应用场景上各具特色,共同支撑航空航天、量子科技、高端制造等领域的技术突破。
2025-08-29
-
什么是水复合激光加工技术?高端制造领域热损伤难题的创新解决方案
水复合激光加工技术以水为核心辅助介质,通过“冷却-冲刷-导光”的多机制协同作用,构建了三类差异化技术体系,为精密制造领域提供了覆盖“经济实用”至“高精度高效能”的全场景技术方案,对推动高端制造业高质量发展具有重要意义。
2025-08-29
-
水导激光加工碳化硅高深径比微孔的技术研究与工艺优化
碳化硅作为一种具备高硬度、高耐磨性及优异热学、电学性能的先进材料,在航空航天、半导体器件、新能源装备等高端制造领域应用前景广阔。然而,其硬脆特性使得高深径比微孔(深径比≥10:1)加工面临严峻挑战,传统加工工艺如机械钻孔、电火花加工、超声加工等,普遍存在刀具磨损严重、加工精度低、表面质量差或加工效率不足等问题,难以满足高端领域对碳化硅微孔构件的严苛要求。在此背景下,水导激光加工技术融合激光高能量密度与水射流冷却排屑的双重优势,为突破碳化硅微孔加工瓶颈提供了创新技术路径,相关工艺参数的优化研究对推动该技术产业化应用具有重要意义。
2025-08-28