【光学前沿】华中科技大学团队实现飞秒多边形光学涡旋脉冲,拓展微纳操控新维度
华中科技大学张金伟教授团队近期取得一项突破性成果,成功研制出飞秒级多边形光学涡旋脉冲,首次将多边形光学涡旋的应用从连续波拓展至超快脉冲领域。该研究成果发表于《Light:Science&Applications》,为飞秒光镊、三维微结构制造等前沿领域的发展提供了重要技术支撑。

领域突破:从连续波到飞秒脉冲的跨越
光学涡旋因具有螺旋相位分布及轨道角动量(OAM)特性,在光通信、微粒捕获、亚衍射极限显微术及量子纠缠调控等领域应用广泛。与连续波涡旋光束相比,飞秒光涡旋脉冲兼具螺旋相位波前与高峰值功率特性,在阿秒涡旋生成、粒子动态操纵、物质与复杂光场相互作用研究及三维手性微结构制造等方面具有独特优势。
多边形光学涡旋作为光学涡旋的新分支,凭借可定制的强度结构与额外自由度受到广泛关注,但此前其研究与应用始终局限于连续波范畴。张金伟团队的研究首次实现飞秒级多边形光学涡旋脉冲,不仅填补了该领域的技术空白,更通过其独特的时空特性,为微观操控提供了高精度工具。例如,在三维手性微结构制造中,飞秒多边形涡旋可依托其多边形强度分布与轨道角动量,实现材料的选择性刻蚀,构建传统光束难以完成的复杂结构。
技术核心:准频简并与锁模技术的协同创新
该成果的关键在于创新性地将锁模激光技术与准频简并态调控有效结合。研究团队采用Yb:KGW锁模激光振荡器,通过精确调控激光腔长,使振荡器工作于准频简并状态,生成具有特定相位关系的飞秒厄米-高斯脉冲。这些脉冲经像散模式转换器处理后,成功转化为具有方形、五边形和六边形强度分布的多边形光学涡旋。
实验结果表明,这些飞秒多边形涡旋脉冲具有优异的性能:平均功率均超过1瓦,脉冲宽度小于500飞秒(其中方形脉冲最短达389飞秒),重复频率约为116MHz,且长期运行功率稳定性偏差低于1.3%。通过马赫-曾德尔干涉仪测量证实,这些涡旋脉冲携带明确的轨道角动量,其拓扑荷数分别为10(方形)、16(五边形)和17(六边形),与理论模拟结果高度吻合。
应用前景:微纳操控领域的革新潜力
该技术的突破为多个前沿领域带来革新潜力。在飞秒光镊应用中,多边形强度分布使光束可适配不同形状的微粒,显著提升分选效率;其高峰值功率特性可通过非线性光学效应改变微粒局部折射率,为微观操控增加新维度。
在三维微结构制造领域,飞秒多边形涡旋的超短脉冲特性可减少热扩散效应,结合其可控的几何参数与轨道角动量,有望实现螺旋手性微管等复杂器件的高精度加工。此外,该技术在量子信息领域亦展现出应用前景——多边形涡旋的多奇点特性为量子纠缠态调控提供了新的自由度。
未来展望:向更高阶结构与更优性能拓展
研究团队表示,目前已实现三角形至八边形连续波多边形涡旋,下一步计划通过优化激光腔设计、提升泵浦功率及采用混合泵浦方案等方式,拓展飞秒脉冲的多边形种类,旨在实现十边形以上高阶结构。同时,通过采用宽带色散镜及宽带发射光谱增益介质,有望将脉冲宽度压缩至100飞秒以内,为阿秒科学研究提供新工具。
该研究不仅是光学涡旋技术的重要跨越,更标志着人类对光场时空结构的调控进入更精细维度。随着技术的成熟,飞秒多边形光学涡旋有望成为连接微观操控与宏观器件制造的关键纽带,推动微纳光子学、生物医学工程等领域的跨越式发展。
-
半导体抛光设备自动化应用及工艺质量管控要点探析
在半导体器件规模化量产进程中,抛光工艺作为保障晶圆加工精度与表面质量的核心环节,其设备自动化水平、工艺参数调控能力、检测体系完善度及异常处置效率,直接决定生产效率、工艺稳定性与产品良率。本文从抛光设备自动化配置要求、核心工艺参数调控、关键检测指标界定及常见工艺异常处理四个维度,系统阐述半导体抛光工艺的质量管控核心要点,为半导体抛光制程的标准化、精细化实施提供参考。
2026-02-12
-
硅晶圆激光切割核心技术深度解析:原理、工艺与质量把控
在半导体制造产业链中,硅晶圆切割是芯片成型的关键工序,其加工精度与效率直接影响芯片良品率和产业发展节奏。随着微电子器件向微型化、薄型化升级,传统切割方式的弊端逐渐显现,激光切割凭借高精度、低损伤的技术优势成为行业主流。本文从激光切割系统的硬件构成出发,深入拆解隐形切割与消融切割两大核心工艺,解析光斑、焦点的精度控制逻辑,并探讨切割质量的评价维度与效率平衡策略,系统梳理硅晶圆激光切割的核心技术体系
2026-02-12
-
无掩模激光直写技术研究概述
无掩模激光直写技术作为微纳加工领域的先进光刻技术,摒弃了传统光刻工艺对掩模版的依赖,凭借直接写入的核心特性,在复杂微纳结构制备、高精度图案加工中展现出独特优势,成为微纳加工领域的重要技术方向。本文从工作原理与流程、技术特性、现存挑战、分辨率与对准参数、核心设备及厂务动力配套要求等方面,对该技术进行全面梳理与阐述。
2026-02-12
-
SiC功率器件的高温时代:封装成为行业发展核心瓶颈
在半导体功率器件技术迭代进程中,碳化硅(SiC)凭借高温工作、高电流密度、高频开关的核心优势,成为推动功率半导体升级的关键方向,其普及大幅提升了器件的功率密度与工作效率,为功率半导体行业发展带来全新机遇。但与此同时,行业发展的核心瓶颈正悄然从芯片设计与制造环节,转移至封装层面。当SiC将功率器件的工作温度与功率密度不断推高,芯片本身已具备承受更高应力的能力,而封装环节的材料适配、热路径设计等问题却日益凸显,高温与快速功率循环叠加的工况下,焊料与热路径成为决定SiC功率模块寿命的核心因素,封装技术的发展水平,正成为制约SiC功率器件产业化落地与长期可靠应用的关键。
2026-02-12
