LED光源模块由LED光源和散热器组成
LED光源模块由LED光源和散热器组成,实现发光和独立散热模块化设计。对于普通的LED光源,芯片产生的大部分热量通过散热器和空气的热交换而流失。

选择合适的散热结构不仅可以满足LED的散热需求,还可以降低LED模块的成本。根据散热器材料的不同,LED光源模块可分为:基于金属散热、塑料散热、玻璃散热、复合散热的四种常见的LED光源模块。
基于金属散热的LED光源模块
由于金属具有导热系数高、加工方便、强度好等优点,基于金属散热的LED光源模块是LED灯中应用较早、应用较广泛的光源模块。制作LED金属光源模块的散热器材料为铸铁、钢、铝、铜等。铝是LED金属光源模块中最常用的材料,因为它具有传热系数高、密度低、成本低等优点。然而,金属具有导电性和高密度的特点,限制了LED金属散热模块在某些地方的应用。
基于玻璃散热的LED光源模块
玻璃具有透光率高、热稳定性好、绝缘性好、美观、成本低、加工工艺成熟等优点,一直是传统灯具生产的首选材料。由于玻璃传热系数差,玻璃LED光源模块仅用于排热要求低的地方。
基于导热塑料散热的LED光源模块
导热塑料的传热系数是普通塑料的100倍,绝缘参数比金属好,制备难度比瓷器好。随着导热塑料探索的改进,其价格将会下降,许多学者认为LED导热塑料模块是LED灯的一个非常重要的领域。
LED光源模块复合散热
随着LED灯的多样化,LED光源模块也从单一材料盘发展为基于两种或两种以上材料的复合散热的LED光源模块。LED复合散热模块吸收了两种散热材料的优点,解决了各自的缺点,在散热性能、成本、绝缘、重量等方面具有相当大的优势。因此,许多学者认为复合排热LED光源模块是LED光源模块未来的发展趋势。
在机器视觉和半导体设备、3D图像和印刷、太阳能和光伏发电、生命科学和医疗产品的研发过程中,我们经常需要一些更精确的LED光源。目前市场主要是LED加上导光板的简单形状组合,在过去尚且能使用,在人工智能时代,达到光学精度水平的光源可以满足您的需求。
-
干涉测量术的原理、应用及技术演进研究
从宇宙天体的精细化观测到纳米级工业制造的质量管控,干涉测量术基于波的干涉效应,已发展为现代科学研究与工业生产中不可或缺的精准测量技术支撑。该技术以激光为核心载体,通过系统解析波的干涉规律,在跨学科领域实现了测量精度与应用范围的双重突破,成为推动科技进步的关键基础性工具。
2025-11-17
-
什么是柱镜光栅?微米级光学技术引领视觉领域革新
当裸眼3D影像突破平面束缚,当立体成像技术赋能产品包装升级,当光学隐身从科幻概念走向技术实践,柱镜光栅这一核心光学材料正凭借其独特的技术特性,在多个领域推动视觉体验与应用场景的深度变革。作为由微米级圆柱状凸透镜阵列构成的功能性光学材料,柱镜光栅以精准调控光线传播路径的核心能力,成为连接微观结构与宏观视觉应用的关键桥梁。
2025-11-17
-
突破性进展:阿秒涡旋脉冲串成功实现,拓展超快光-物质相互作用研究新维度
在超快光学领域,阿秒脉冲技术已成为观察原子、离子、分子等微观体系中超快电子动力学的重要手段,而轨道角动量这一关键自由度的引入,为该技术的创新发展提供了全新方向。近日,西班牙萨拉曼卡大学AlbadelasHeras教授、美国科罗拉多矿业学院DavidSchmidt教授领衔的联合研究团队,在国际权威期刊《Optica》(Vol.11,No.8)发表重磅研究成果,成功研发出阿秒涡旋脉冲串这一新型超快结构化光场。该成果通过创新性技术方案突破传统瓶颈,为化学、生物、凝聚态物理及磁学等多学科前沿研究提供了具备高时间分辨率与多维调控能力的独特工具。
2025-11-17
-
清华大学提出神经光瞳工程傅里叶叠层成像技术实现大视场高分辨率显微成像突破
在科研与医疗领域,显微镜的大视场观测与高分辨率成像需求长期存在相互制约的技术矛盾。当观测视场扩大时,边缘区域易出现图像失真、细节模糊等问题,严重影响后续分析与应用。清华大学曹良才课题组提出的神经光瞳工程傅里叶叠层成像(NePEFPM)新方法,成功破解这一技术瓶颈,为大视场高分辨率显微成像提供了创新性解决方案。相关研究成果发表于国际权威期刊《Optica》。
2025-11-17
