突破性进展:量子点白光LED技术开创无重金属新范式
在照明与显示技术领域,白光发光二极管(LED)的性能优化一直是科研人员关注的核心方向。其中,基于单组分量子点的白光发光二极管(sc-WQLEDs)因具备低工作电压与高光谱稳定性的显著优势,长期以来是研究焦点。然而,受限于高效白色量子点发射体的缺乏,其性能始终落后于先进的白色有机发光二极管。这一技术瓶颈近日被一项重要研究成果打破。
上海大学杨绪勇、张建华团队联合美国密歇根大学科研人员在《NaturePhotonics》发表研究论文,通过创新的材料设计与制备工艺,成功研发出高性能量子点白光LED,为无重金属、高性能白光照明领域开辟了全新路径。
核心突破:卤素掺杂破解白光发射关键难题
传统研究中,利用半导体量子点中的自陷激子产生宽带白光发射是极具潜力的技术方向,但此类发射体普遍存在电荷传输能力弱与结构稳定性不足的双重局限。该团队的创新之处在于,通过卤素离子的异价掺杂,实现了ZnSe核的局部晶格软化,从而突破了这一技术瓶颈。
具体而言,研究团队设计了新型核壳结构量子点——Cl:ZnSe/ZnSe/ZnS。其核心设计逻辑为:在ZnSe核心中掺杂氯离子,诱导局部晶格软化以形成自陷激子(STE),进而产生稳定的宽带黄色发射;同时,ZnSe本身的激子蓝光发射得以保留。两种发射的协同作用,恰好实现了高效白光输出。
为达成精准调控,团队采用高温注入苯乙基氯化铵(PEACl)的方法实现氯离子的可控掺杂,并通过ZnSe/ZnS壳层包裹显著提升量子点的结构稳定性。这一设计不仅解决了自陷激子发射体的固有缺陷,更使所制备的Cl:ZnSe/ZnSe/ZnS量子点光致发光量子产率达到83%,为高性能器件的构建奠定了坚实基础。
性能跃升:多项核心指标刷新行业纪录
基于该创新量子点的单组分白光LED(sc-WQLED)展现出卓越性能:最大外部量子效率(EQE)达15%,平均效率为10.5±2.6%;亮度突破26,000cd/m²,显著超出日常照明与显示的需求标准;在初始亮度100cd/m²的条件下,器件寿命(T50)超过2,500小时,体现出优异的长期稳定性。
尤为重要的是,该量子点不含重金属元素,完全契合绿色环保的产业发展趋势,使其在追求可持续发展的照明与显示领域具备不可替代的应用价值。
行业意义:引领白光技术新发展方向
此项研究通过材料设计与掺杂工艺的创新,攻克了单组分量子点白光LED长期存在的性能瓶颈,提供了一种无重金属、高性能的白光技术解决方案。其成果为白光照明的低成本、长寿命、环保化发展树立了新范式,有望推动量子点LED在室内照明、显示屏、车载显示等多个领域的快速应用,为下一代光电子技术的发展注入强劲动力。
-
安防镜头MTF测试如何保障监控画质?ImageMaster系列筑牢安防视觉防线
安防监控是社会安全体系的“眼睛”,从城市交通卡口的车牌识别、园区周界的入侵监测,到夜间红外监控的场景还原,安防镜头的成像质量直接决定了监控数据的有效性——模糊的画面会导致车牌识别失败、人脸特征不清,甚至遗漏关键安全隐患。而MTF(光学传递函数)测试作为衡量镜头分辨率、对比度及综合光学性能的核心标准,专业的“安防镜头MTF测试仪”已成为安防镜头研发、生产企业的质量刚需。德国ImageMaster系列MTF测试仪,凭借全场景适配、高精度检测的优势,为安防镜头质量把控提供了国际一流的测试解决方案。
2025-09-12
-
基于硅通孔(TSV)的硅片减薄技术全景解析——支撑三维集成(3DIC)发展的关键工艺
三维集成(3DIC)技术凭借“垂直堆叠”的创新架构,已成为突破摩尔定律技术瓶颈的核心路径。硅通孔(TSV)作为3DIC实现芯片间垂直互联的核心载体,却长期受限于传统厚硅片(700800μm)的深宽比制约——不仅难以制备直径520μm的微小TSV结构,导致芯片面积占比居高不下,更使得多层堆叠后的芯片总厚度常突破毫米级,与智能手机、可穿戴设备等终端产品对芯片“厚度<1mm”的严苛要求存在显著冲突。
2025-09-12
-
电子光学核心技术与演进:理想成像标准、静电/磁透镜原理、像差校正及微观观测应用
微观世界探索的进程中,显微镜始终是核心技术支撑。从光学显微镜实现细胞结构的可视化,到电子显微镜突破原子尺度观测的极限,观测精度的每一次跃升,均以“透镜”技术的革新为核心驱动力。电子光学作为衔接电子运动规律与微观成像的关键学科,既继承了可见光光学的核心理论框架,又基于电子的粒子性与带电特性,构建了独特的聚焦调控与像差校正体系。从理论层面的“理想成像”标准确立,到工程实践中像差难题的逐步攻克,电子光学的发展历程,本质上是对微观观测“理想目标与现实约束”的持续平衡与突破。
2025-09-12
-
遗传算法调控光学流氓波:华东师范大学团队开辟复杂系统控制新路径
近日,华东师范大学曾和平教授团队在国际权威期刊《Laser&PhotonicsReviews》发表的研究成果,为这一技术难题提供了突破性解决方案。该团队创新性地将遗传算法与电子偏振控制技术相结合,首次实现了对超快光纤激光器中光学流氓波的精准调控——不仅可按需生成普通光学流氓波,还成功合成出强度较有效强度阈值高32.8倍的“超流氓波”,同时揭示了其背后全新的物理生成机制,为复杂系统极端事件的控制研究提供了关键参考。
2025-09-12