瑞士团队研发超薄铌酸锂超透镜,可实现红外光至可见光转换
从体积庞大的传统相机到如今便携的智能手机相机,光学设备的发展历程始终伴随着对尺寸限制的突破。然而,即便是性能优异的智能手机镜头,仍需通过多片透镜堆叠实现功能,这使其往往成为机身最厚的部件——在传统光学设计中,厚透镜是实现光线弯曲、确保传感器捕获清晰图像的必要条件,这一特性也成为制约设备微型化的关键瓶颈。

过去十年间,超透镜的出现为突破这一限制提供了新思路。作为一种平面透镜,超透镜不仅具备传统透镜的核心功能,其厚度更仅为人类发丝直径的1/40,且具有重量轻、无需玻璃制备等优势。其核心技术在于表面由宽度和高度仅100纳米的特殊纳米结构构成,这些结构可精准调控光的传播方向,从根本上实现了透镜体积的大幅缩减。
近期,瑞士苏黎世联邦理工学院的研究团队在《先进材料》期刊发表了一项突破性成果:他们成功研发出基于铌酸锂材料的超透镜,该透镜可实现红外光至可见光的直接转换,为光学技术应用开辟了新路径。
铌酸锂是光学领域的重要材料,因能实现非线性光学效应(即使光的波长发生转换),已在电信行业广泛应用于电子设备与光纤的接口元件。然而,传统工艺难以制备铌酸锂纳米结构,因其材料性质稳定且硬度较高,加工难度极大。
该团队开发的新工艺则有效解决了这一难题。他们将化学合成与精密纳米工程相结合:首先将含铌酸锂晶体前体的溶液在液态下压印成型,随后将材料加热至600°C,使其形成具备特定光学特性的晶体结构。值得注意的是,该工艺具备批量生产优势——反向模具可反复使用,能够按需制备大量超透镜,与其他铌酸锂小型化光学器件相比,其制造成本更低、生产效率更高。
这种铌酸锂超透镜的核心优势在于集成了“波长转换”与“精准聚焦”功能。实验显示,当波长为800纳米的红外光穿过该透镜时,另一侧可输出波长为400纳米的可见光,且光线能精准聚焦于目标点。这一特性源于其特殊纳米结构与铌酸锂材料非线性光学特性的协同作用。
研究团队指出,该超透镜的应用前景广泛。在防伪领域,其微观结构在可见光下不可见,且非线性材料特性可提供高可靠性的认证信息,适用于钞票、证券及艺术品的防伪鉴定;在科研领域,其有望成为下一代显微镜的核心组件,推动红外成像技术向更轻便、高效的方向发展。
此项技术的突破,不仅实现了光学透镜的微型化与功能集成,更为光学设备的设计革新与应用拓展奠定了重要基础,或将引领光学技术进入新的发展阶段。
-
光学显微镜的“原子困境”终被打破
长期以来,光学显微镜面临一道难以逾越的“尺寸鸿沟”:若将原子比作一粒沙子,光波则如同海洋波浪——由于二者尺寸差异悬殊,光波在传播时往往会“错过”原子,导致科学家无法通过传统光学显微镜观察并解析单个原子。尽管超分辨率技术已突破衍射极限,能呈现分子尺度的特征,但对原子级别的观测仍束手无策,这一困境直至近日才被MIT团队的新成果打破。
2025-10-30
-
半导体晶圆制造工艺解析,从原料到核心载体的全流程
半导体芯片作为现代工业体系的核心组成部分,被誉为“工业皇冠上的明珠”。而晶圆作为芯片制造的基础载体,其制备工艺直接决定了芯片的性能与良率。本文基于半导体产业技术逻辑,系统梳理晶圆制造的核心流程、产业分工体系及关键技术要点,为理解半导体产业链底层逻辑提供专业参考。
2025-10-30
-
突破光学技术瓶颈!大孔径宽带消色差超构透镜研究,推动全彩成像技术迈入超薄化发展新阶段
在智能手机摄影、自动驾驶环境感知、医疗内窥镜诊断等现代技术领域,光学透镜作为核心成像组件,其性能直接决定了相关设备的应用效能。传统折射透镜长期面临“性能提升”与“体积控制”的矛盾:若追求更高成像质量,需增加透镜厚度与重量,这与智能手机“轻薄化”、医疗设备“微创化”、自动驾驶设备“集成化”的发展需求严重相悖。
2025-10-30
-
精密光学镜片选型关键,机械与耐久性测试的核心价值与应用规范
精密光学镜片的采购与质量管控环节过程中,多数光学产品研发与生产从业者往往优先聚焦于透光率、面形精度等显性光学性能指标,却易忽视机械与物理性能检测、耐久性测试的重要性。然而实践表明,此类被忽略的测试环节,正是引发后续组装良率下降、终端产品故障的关键隐患。
2025-10-30
