硅光集成技术:AI大算力场景下的关键传输支撑
在人工智能从决策智能向生成式智能、代理式智能演进的过程中,大规模算力集群作为“智能训练基地”,需依托数万颗算力芯片组成的“计算网络”完成海量数据训练。若将训练数据比作“信息载体”,光模块则是传输这些载体的“核心工具”,而硅光集成技术,正逐步成为AI时代极具潜力的高效传输方案。

光模块传输能力对比
不同传输方案在AI组网中承担着差异化角色:电缆模块传输距离仅为数米;LED光模块覆盖一二十米;VCSEL多模模块可实现三五十米至两百米的传输;EML单模模块与硅光模块则能覆盖数百米至数公里,这一范围恰好满足AI大规模训练组网的核心需求。
在数百米至数公里的关键传输区间,硅光模块的主要竞争者为EML(电吸收调制激光器),而薄膜铌酸锂(TFLN)技术也正逐步加入竞争,形成三者共同角逐的技术格局。
澄清认知:硅光优势并非“速率优先”
行业中存在一种常见误解,认为硅光的核心优势在于传输速率。事实上,EML技术基于InP材料,自上世纪八十年代发展至今已相当成熟,速率可达448Gbps;薄膜铌酸锂同样能实现这一速率;而硅光调制器目前在突破200Gbps方面仍面临挑战。448Gbps的PAM4信号需110GHz带宽支撑,EML与TFLN均可满足这一要求,硅光则需在60-70GHz带宽下运行。
硅光的核心竞争力,体现在更深层次的技术特性上。
硅光集成技术的四大核心优势
1.强集成能力:高良率支撑规模化应用
硅作为单元素半导体,无需复杂的外延生长及量子阱对接工艺,良率显著高于EML。EML基于InP化合物半导体,单颗芯片需从晶圆中严格筛选,在集成阵列时良率呈指数级下降;而硅光可便捷实现多调制器、探测器、波分器件的集成,甚至能与激光器形成混合集成,为大规模组网提供集成化解决方案。
2.电信号带宽优势:高效支撑高速信号传输
尽管硅光调制器自身带宽约为55GHz,但硅基集成电路的成熟工艺赋予其独特优势——高精度刻蚀技术使高速电信号(射频信号)的传输带宽可突破110GHz。相比之下,EML芯片虽能达到110GHz带宽,但其传统封装工艺导致电信号互联带宽仅为50-70GHz,形成性能瓶颈。硅光在电信号传输上的高效性,为数据高速流动提供了有力支撑。
3.3D封装技术:实现光-电集成协同增效
硅光芯片与硅基电芯片的3D封装具备显著协同优势。台积电等企业采用的FlipChip(倒装焊)技术,可实现硅光芯片与电芯片的高密度集成,而EML受材料特性限制,在封装协同性上相对不足。这种“光-电”融合的封装能力,进一步提升了硅光在系统级应用中的效率。
4.低成本与高密度潜力:规模化发展的核心优势
硅基晶圆尺寸可达8英寸、12英寸(直径300mm),而InP晶圆多为2-3英寸(直径75mm)。若未来产业规模扩大、工艺成熟,硅光凭借批量生产能力可显著降低成本。同时,硅光波导具有小型化特性(弯曲半径更小),能在相同空间内实现更高集成密度,为AI集群的高密度部署提供支撑。
技术竞争与发展前景
在AI组网的500米至2公里核心传输区间,硅光、EML与薄膜铌酸锂形成了技术博弈格局。EML胜在速率成熟,薄膜铌酸锂兼具高速率与集成潜力,硅光则凭借集成化、低成本及高协同性稳步发展。随着AI算力需求从“万卡集群”向更大规模升级,硅光集成技术凭借其综合优势,正逐步成为AI大算力场景下的关键传输支撑,为智能时代的高效信息交互奠定基础。
-
镜头色差成因及校正技术解析:ED镜片与APO复消色差系统
在光学成像领域,色差是影响镜头成像质量的核心问题之一。尤其是在长焦拍摄、广角边缘成像或逆光、大光比等复杂场景下,画面中出现的紫边、绿边等色边现象,以及颜色浸润、边缘模糊等问题,本质上均为色差(ChromaticAberration,简称CA)导致的成像偏差。本文将系统解析色差的物理本质、产生机制,深入探讨普通镜片组合、ED镜片及APO复消色差三种校正方案的技术原理与优劣特性,并澄清行业内关于APO镜头与锐度的认知误区。
2025-12-15
-
无干涉机制赋能宽带片上角动量复用:150纳米带宽芯片技术实现
在信息技术向超高容量、微型化方向持续演进的当下,光的角动量复用技术凭借其物理正交特性,已成为破解数据传输与存储领域性能瓶颈的关键技术路径。然而,传统基于干涉法的探测方案受限于器件体积与带宽特性,难以满足芯片级集成应用的核心需求。近日,一项发表于《Science》的研究提出了无干涉角动量复用创新方案,通过设计新型纳米环孔径结构,成功实现150纳米带宽的片上并行复用,为微型化纳米光子器件的研发与应用开辟了全新路径。
2025-12-15
-
多组间隔镜片镜头的定心装配与空气间隔控制技术
在精密光学镜头(如安防监控镜头、工业检测镜头、高端成像镜头等)中,多组带空气间隔的镜片是实现高清成像的核心结构。镜片光轴的同轴度与空气间隔的精准度直接决定镜头的分辨率、像差校正效果等关键指标——若光轴偏移,会导致成像模糊、畸变;若空气间隔偏离设计值,则会破坏光学系统的共轭关系,影响画质还原。针对这类镜头,数控定心车削技术结合闭环反馈装配体系,已成为实现高精度定心装配与空气间隔控制的主流方案。
2025-12-15
-
放大的自发辐射(ASE)与受激辐射的核心机制及差异解析
在量子电子学与激光物理领域,光辐射机制的特性直接决定了光学器件的性能与应用场景。放大的自发辐射(Amplified Spontaneous Emission,ASE)作为介于自发辐射与受激辐射之间的关键光放大过程,其物理本质与两类基础辐射机制的差异,是理解光电子技术原理的核心前提。本文基于量子光学基本理论,系统梳理三者的物理机制、形成过程及核心差异,为相关领域的理论研究与技术应用提供参考。
2025-12-15
