什么是机械定心法,机械定心法的原理、系数和精度分析
机械法定心是一种精密的工艺,能保证透镜在固定过程中的稳定性和精确性。在实际操作中,定心过程需要非常细致和耐心的调整。技术操作人员必须不断地监测透镜的位置,通过精密的测量仪器来确保力的平衡。从而透镜的稳定性和光学性能将得到显著提升,从而使得整个光学系统的性能达到设计要求。下面一起来看看具体的原理吧!
一、机械定心法原理
机械法定心是将透镜放在一对同轴精度高、端面精确垂直于轴线的接头之间,利用弹簧压力夹紧透镜,根据力的平衡来实现定心。一个接头可以转动,另一个既能转动又能沿轴向移动。当透镜光轴与机床主轴尚未重合时,如图所示,假设接头与透镜接触后,则接头施加给透镜压力N,方向垂直于透镜表面。压力N可分解为垂直于接头端面的夹紧力F和垂直于轴线的定心力P。定心力P将克服透镜与接头之间的摩擦力,使透镜沿垂直于轴线方向移动,夹紧力F将推动透镜沿轴线方向移动。当透镜光轴与机床主轴重合时,定心力就达到平衡,即完成定心。
二、机械定心法的系数
不是所有的透镜都能采用机械方法定心,因此,光学镜片在定心之前,可计算定心系数K值来判断加工的难易度,作为设计工艺与夹具的参考。
从上图可以看出,定心力的大小与接头和透镜之间的压力的大小和方向有关。压力的大小是由弹簧力决定的,而方向是由透镜的定心角(夹紧角)决定,定心角是指在接头轴线平面内,透镜与接头接触点的切线间的夹角α。设接头和透镜之间的定心角为αi,接头的直径为Di,透镜非黏结面的曲率半径为Ri,则定心角的正切值为
通过一系列计算可得机械法定心系数K为
假设摩擦系数μ=0.15,则上式计算得出的K≥0.15,说明定心角α=17°30′,则定心可行;若0.1<K<0.15,则相当于定心角为12°<α<17°30′,定心效果差;若K<0.1,相当于α<12°,则不能定心。
三、影响机械法定心精度的因素
1)机床主轴径向跳动
机床主轴径向跳动直接会造成透镜基准轴的位置变化,因此,机床使用前一定要校正主轴跳动,使其径向跳动小于定心精度。
2)接头
机械法定心的关键是定心接头的精度和质量,要防止接头表面划伤抛光表面,并能保证定心后的中心误差精度,因此,对接头提出如下要求:
(a)接头轴与机床回转轴的重合精度应高于定心精度。
(b)接头端面应与几何轴线精确垂直。
(c)接头端面应光滑,不能擦伤透镜抛光表面,表面粗糙度应达到*Ra*0.16。
(d)接头外径比透镜完工外径小0.15~0.30mm。
(e)接头材料通常选用黄铜或钢。
以上就是机械定心法的原理、系数和精度分析,如果您还有更多关于定心车的内容,请持续关注欧光科技。
-
山东大学团队研发谱时不相关随机激光频率梳,突破并行物理随机数关键技术瓶颈
近期,山东大学徐演平教授团队在物理随机数技术领域取得重大突破。该团队通过构建谱时不相关随机激光频率梳,成功实现31通道并行快速随机比特生成,单通道比特率达35Gbps,总吞吐率突破1.085Tbps。此项成果不仅打破了传统多波长激光系统在通道相关性、扩展性及随机性方面的技术瓶颈,更以原创性技术方案为高速安全通信、量子信息及高性能计算等领域提供了新一代物理随机数解决方案。相关研究成果已发表于激光与光子学领域国际顶级期刊《Laser&PhotonicsReviews》,彰显了我国在该技术领域的领先地位。
2025-09-15
-
低倍放大镜的光束限制:眼瞳与透镜的协同作用
单透镜构成的低倍放大镜是常用工具,其核心功能是通过透镜折射放大物像,帮助人眼清晰观察微小物体。然而,放大镜的成像质量与可视范围并非仅由透镜放大率决定,光束限制是另一关键光学特性——它决定了哪些光线能参与成像、成像区域的边界在哪里,而这一过程的核心在于放大镜与眼瞳的协同作用。
2025-09-15
-
安防镜头MTF测试如何保障监控画质?ImageMaster系列筑牢安防视觉防线
安防监控是社会安全体系的“眼睛”,从城市交通卡口的车牌识别、园区周界的入侵监测,到夜间红外监控的场景还原,安防镜头的成像质量直接决定了监控数据的有效性——模糊的画面会导致车牌识别失败、人脸特征不清,甚至遗漏关键安全隐患。而MTF(光学传递函数)测试作为衡量镜头分辨率、对比度及综合光学性能的核心标准,专业的“安防镜头MTF测试仪”已成为安防镜头研发、生产企业的质量刚需。德国ImageMaster系列MTF测试仪,凭借全场景适配、高精度检测的优势,为安防镜头质量把控提供了国际一流的测试解决方案。
2025-09-12
-
基于硅通孔(TSV)的硅片减薄技术全景解析——支撑三维集成(3DIC)发展的关键工艺
三维集成(3DIC)技术凭借“垂直堆叠”的创新架构,已成为突破摩尔定律技术瓶颈的核心路径。硅通孔(TSV)作为3DIC实现芯片间垂直互联的核心载体,却长期受限于传统厚硅片(700800μm)的深宽比制约——不仅难以制备直径520μm的微小TSV结构,导致芯片面积占比居高不下,更使得多层堆叠后的芯片总厚度常突破毫米级,与智能手机、可穿戴设备等终端产品对芯片“厚度<1mm”的严苛要求存在显著冲突。
2025-09-12