什么是机械定心法,机械定心法的原理、系数和精度分析
机械法定心是一种精密的工艺,能保证透镜在固定过程中的稳定性和精确性。在实际操作中,定心过程需要非常细致和耐心的调整。技术操作人员必须不断地监测透镜的位置,通过精密的测量仪器来确保力的平衡。从而透镜的稳定性和光学性能将得到显著提升,从而使得整个光学系统的性能达到设计要求。下面一起来看看具体的原理吧!
一、机械定心法原理
机械法定心是将透镜放在一对同轴精度高、端面精确垂直于轴线的接头之间,利用弹簧压力夹紧透镜,根据力的平衡来实现定心。一个接头可以转动,另一个既能转动又能沿轴向移动。当透镜光轴与机床主轴尚未重合时,如图所示,假设接头与透镜接触后,则接头施加给透镜压力N,方向垂直于透镜表面。压力N可分解为垂直于接头端面的夹紧力F和垂直于轴线的定心力P。定心力P将克服透镜与接头之间的摩擦力,使透镜沿垂直于轴线方向移动,夹紧力F将推动透镜沿轴线方向移动。当透镜光轴与机床主轴重合时,定心力就达到平衡,即完成定心。

二、机械定心法的系数
不是所有的透镜都能采用机械方法定心,因此,光学镜片在定心之前,可计算定心系数K值来判断加工的难易度,作为设计工艺与夹具的参考。

从上图可以看出,定心力的大小与接头和透镜之间的压力的大小和方向有关。压力的大小是由弹簧力决定的,而方向是由透镜的定心角(夹紧角)决定,定心角是指在接头轴线平面内,透镜与接头接触点的切线间的夹角α。设接头和透镜之间的定心角为αi,接头的直径为Di,透镜非黏结面的曲率半径为Ri,则定心角的正切值为

通过一系列计算可得机械法定心系数K为

假设摩擦系数μ=0.15,则上式计算得出的K≥0.15,说明定心角α=17°30′,则定心可行;若0.1<K<0.15,则相当于定心角为12°<α<17°30′,定心效果差;若K<0.1,相当于α<12°,则不能定心。
三、影响机械法定心精度的因素
1)机床主轴径向跳动
机床主轴径向跳动直接会造成透镜基准轴的位置变化,因此,机床使用前一定要校正主轴跳动,使其径向跳动小于定心精度。
2)接头
机械法定心的关键是定心接头的精度和质量,要防止接头表面划伤抛光表面,并能保证定心后的中心误差精度,因此,对接头提出如下要求:
(a)接头轴与机床回转轴的重合精度应高于定心精度。
(b)接头端面应与几何轴线精确垂直。
(c)接头端面应光滑,不能擦伤透镜抛光表面,表面粗糙度应达到*Ra*0.16。
(d)接头外径比透镜完工外径小0.15~0.30mm。
(e)接头材料通常选用黄铜或钢。
以上就是机械定心法的原理、系数和精度分析,如果您还有更多关于定心车的内容,请持续关注欧光科技。
-
强各向异性范德华材料:纳米尺度下的光学新范式
在纳米光学领域的快速发展进程中,强各向异性范德华(vanderWaals,vdW)材料凭借其独特的物理特性,正重新定义折射、反射和聚焦等基本光学现象,为光子学应用开辟了全新赛道。发表于《Nature Nanotechnology》,系统深入地揭示了这类材料中极化激元的特殊行为及其引发的突破性光学效应,为纳米光子器件的创新发展奠定了重要基础。
2026-02-03
-
光学透镜加工出现颜色差异如何解?
光学透镜加工出现颜色差异,核心是加工过程中透镜表面的光学薄膜(增透膜/反射膜等)或基底材料表面发生了物理/化学变化,也可能是加工工艺参数偏差导致的膜层厚度、均匀性异常,需按“先定位差异成因→再针对性工艺调整→最后验证整改效果”的思路解决,以下是分场景的成因分析和具体解决方案,覆盖镀膜环节(最主要成因)、机械加工环节、清洁与后处理环节三大核心场景,兼顾量产和小批量加工的实操性:
2026-02-03
-
光度学核心物理量的数学推导与应用探析
光度学作为建立在几何光学与辐射度量学基础上的严密学科,其核心价值在于精准描述光的传播规律及与物质的相互作用。光通量、发光强度、照度和亮度这四大物理量,构成了光度学的理论基石,其内在逻辑关系与数学推导不仅是学术研究的关键内容,更是光学设计、计算机图形学等工程领域的技术前提。本文将从立体角的微分定义出发,系统梳理四大物理量的数学本质、推导过程,并探讨其核心应用与实践价值。
2026-02-03
-
光学镜片钻孔工艺技术解析与应用指南
镜片钻孔工艺是光学制造领域关键加工环节之一,其核心目的主要有两方面:一是在玻璃基板及其他光学元件表面实现精准钻孔;二是为分束镜、透镜、滤光片等光学零件半成品加工孔洞,以满足后续夹持、连接与调整的装配需求。本文将系统梳理光学制造中主流的钻孔工艺技术,从原理、特点、参数及应用等维度进行详细解析,为相关行业选型提供参考。
2026-02-02
