半导体激光器热沉材料的散热难题突破与技术进展
在半导体激光器的性能体系中,散热能力作为核心支撑要素,直接决定器件的使用寿命与运行效能。相关数据表明,电子器件工作温度每升高10摄氏度,其使用寿命将下降50%。这一规律凸显了热沉材料在支撑半导体激光器向高功率、高集成度方向发展中的关键作用。
一.传统热沉材料的局限性及新型材料的兴起
长期以来,钨铜(W/Cu)、钼铜(Mo/Cu)及碳化硅/铝(SiC/Al)等传统热沉材料,因热导率普遍低于200W/(m·K),已无法满足氮化镓(GaN)、碳化硅(SiC)等高功率器件的散热需求。随着无人机、机器人、人工智能计算等设备对功率与集成度的要求持续提升,传统材料的应用瓶颈日益凸显。
在此背景下,以金刚石、石墨烯为代表的碳材料显现出革命性应用潜力。其中,金刚石的热导率高达2200W/(m·K),热膨胀系数仅为1.2×10⁻⁶/K,石墨烯亦具备超高热导率,二者成为第四代热沉材料研发的核心方向。然而,单一碳材料存在明显短板:石墨抗压强度较低且易产生粉尘脱落,金刚石膜则受限于尺寸与成本因素。
为破解上述问题,金属基复合技术(如金刚石-铜、石墨-铝复合材料)通过集成碳材料的高热导率与金属的可调低热膨胀系数,有望研发出满足高功率半导体器件迫切需求的第四代碳/金属热沉复合材料。
二.散热机制与冷却方式:原理及实践应用
半导体激光器的散热过程构成精密的“热传导链条”:热量主要产生于芯片的有源区,经焊料层、绝缘层、界面层传导至过渡热沉与常规热沉,常规热沉与冷却介质接触形成对流换热,进而将热量散发。
半导体激光器的散热封装方式主要包括自然对流热沉冷却、微通道冷却、热电制冷、喷雾冷却、热管散热等。对于单管半导体激光器,自然对流热沉冷却方式因易于加工与组装,成为最经济、常用的冷却方式。该方式通常采用高热导率材料制作热沉,通过扩大自然对流散热面积增加散热量,从而降低激光芯片的工作温度。
三.过渡热沉:热应力难题的解决方案
理想的过渡热沉材料需兼具高热导率,且其热膨胀系数需与激光器芯片的热膨胀系数相匹配。铜虽因高热导率与导电性在半导体激光器封装中常被用作热沉,但其热膨胀系数与芯片的热膨胀系数差异显著,易产生热应力,影响激光器的输出性能。
在芯片与常规热沉之间加入高热导率且膨胀系数接近芯片热膨胀系数的过渡热沉,可有效解决上述问题。常用的过渡热沉材料包括氮化铝陶瓷、氧化铍陶瓷、碳化硅陶瓷、钨铜合金、碳化硅晶片、金刚石薄膜片、单层石墨烯等。
其中,天然金刚石的热导率高达2000W/(m·K),约为铜的5倍,且热膨胀系数较小,是兼具电绝缘性与高导热性的理想热沉材料。但因天然金刚石成本过高,无法直接应用于半导体激光器封装,目前实际应用中主要采用金刚石薄膜(CVD金刚石膜)或金刚石-金属复合形式,以平衡性能与成本。
随着高功率半导体器件在各领域的深度应用,热沉材料正朝着“高热导、低膨胀、低成本、可规模化”的方向突破。碳/金属复合技术的成熟,或将推动第四代热沉材料成为行业主流,为半导体激光器的性能提升提供坚实支撑。
-
突破催化依赖!中山大学团队PNAS新成果:激光常温常压下实现全水分解,同步制备氢气与过氧化氢
在全球“双碳”目标推进及绿色生产需求升级的背景下,清洁氢能开发与过氧化氢环保制备已成为能源化工领域的核心议题。传统制备技术普遍面临催化剂依赖、高能耗及污染排放等瓶颈,严重制约行业可持续发展。近日,中山大学闫波教授团队在《美国国家科学院院刊》(PNAS)发表的研究成果,为破解这一困局提供了革命性方案:无需任何催化剂,仅通过脉冲激光即可在常温常压条件下直接实现全水分解,同步生成氢气与过氧化氢,且光氢能量转换效率达2.1%,为绿色能源与化工产业开辟了全新技术路径。
2025-10-13
-
哥伦比亚大学研发芯片级高功率频率梳,助力数据中心光源升级
纽约,2025年10月8日—哥伦比亚大学工程与应用科学学院的研究团队研发出一种新技术,无需依赖体积庞大且成本高昂的激光器与放大器,即可构建高功率频率梳。该团队的研究成果实现了频率梳功率向芯片的集成,进而为紧凑式、高功率、多波长光源的开发提供了可能。研究人员认为,所研发的技术方法与系统可应用于先进数据中心——此类数据中心虽已采用光纤链路传输数据,但当前仍普遍依赖单波长激光器。
2025-10-11
-
飞秒光脉冲的3D可视化:用代码“看见”看不见的光
飞秒光脉冲是一种特殊的激光信号,它的体积极小(仅几微米×几微米×几十微米),却蕴含万亿瓦量级的峰值功率——由于尺度远超出肉眼可见范围,我们无法直接用眼睛观察它。但借助不到100行的MATLAB代码,就能将这种抽象的电磁波转化为可旋转、可“飞行”的3D“光子云”(俗称“光蒲公英”)。更重要的是,这一可视化结果严格遵循麦克斯韦方程,兼具科学性与直观性。
2025-10-11
-
光模块产业“卡脖子”问题剖析,从核心芯片到全产业链的突围路径
AI集群的数据流转需求突破每秒TB级,全球数据中心带宽需求呈现每两年翻倍的增长态势,光模块作为承载光信号传输的核心器件,已成为支撑数字经济发展的关键基础设施。据行业统计数据,中国企业在全球光模块市场的份额已超过60%,在下游封装与系统集成领域形成显著竞争优势。然而,深入剖析产业结构可见,我国光模块产业呈现“倒金字塔”式发展格局——真正制约产业高质量发展、形成“卡脖子”风险的环节,并非下游组装领域,而是光模块的核心组件“激光器芯片”,以及支撑芯片制造的上游材料与设备体系。
2025-10-11