突破性高Q手性超表面:实现角度调控的宽带光学响应
在现代光子学研究中,手性超表面因其独特的光与物质相互作用特性,在生物传感、量子光学等领域展现出巨大应用潜力。近期,发表于《AdvancedOpticalMaterials》的一项研究提出了一种硅基手性超表面设计,通过巧妙的结构设计与对称性调控,实现了兼具高Q因子、强手性响应及宽带可调谐特性的突破性进展。
1.设计核心:对称性破缺构建手性基础
该超表面的核心创新在于其独特的双层非对称结构。研究团队以蓝宝石为衬底,构建了由硅柱阵列与硅基板组成的复合体系——硅柱厚度为H1,底层基板厚度为H2,通过部分刻蚀工艺破坏面外对称性,为手性响应奠定基础。
在平面结构设计中,硅柱初始排列呈现周期性差异:x方向周期为P,y方向周期为2P。通过引入相邻硅柱的位置扰动(Δx和Δy),研究人员打破了面内对称性,形成周期倍增的超晶格结构。这种双重对称性破缺(面外+面内)的设计,成功激发了具有强手性特征的本征模式。
2.模式调控:扰动诱导的手性带特性
研究团队针对三种导模能带(TMₐ、TEᵦ和TMc)展开分析,发现这些模式均位于光锥线以下,属于导模范畴。当引入位置扰动后,周期倍增效应使第一布里渊区沿kₓ方向减半,诱导出明显的手性带。
值得注意的是,这些手性模式具有高品质因子(Q)的陡峭色散特性,其谐振波长对入射角表现出高度敏感性。这一特性成为光谱调谐的关键:通过改变入射光角度,可在保持高Q因子的同时实现宽范围波长调节,为动态光学调控提供了全新思路。
3.实验验证:从结构制备到性能表征
扫描电子显微镜(SEM)图像显示,制备的超表面样品精确复现了设计的双层结构与周期性扰动特征。垂直入射实验中,透射琼斯矩阵光谱与模拟结果高度吻合,验证了理论设计的可靠性。
性能测试显示,该超表面在垂直入射下线性圆二色性(CD)值达0.61;通过沿y轴调整入射角,实现了80nm的连续波长调谐范围,且手性响应在斜入射下仍保持稳定。在非线性光学测试中,三倍频(THG)效应表现突出:非线性CD值高达0.95,远优于线性响应,且THG功率与泵浦功率呈现严格的立方依赖关系,证实了三阶非线性光学特性。
4.应用前景:推动手性光子学实用化
这项研究的突破之处在于,首次在单一结构中同时实现了高Q因子、强手性响应与宽带角度调谐能力。其80nm的调谐范围、稳定的高CD值及显著的非线性效应,为手性光学器件的集成化与实用化铺平了道路。
未来,该技术有望在对映体选择性传感、chiral激光调制、量子信息处理等领域发挥关键作用,为新一代光电器件设计提供重要的理论与实验基础。
-
突破催化依赖!中山大学团队PNAS新成果:激光常温常压下实现全水分解,同步制备氢气与过氧化氢
在全球“双碳”目标推进及绿色生产需求升级的背景下,清洁氢能开发与过氧化氢环保制备已成为能源化工领域的核心议题。传统制备技术普遍面临催化剂依赖、高能耗及污染排放等瓶颈,严重制约行业可持续发展。近日,中山大学闫波教授团队在《美国国家科学院院刊》(PNAS)发表的研究成果,为破解这一困局提供了革命性方案:无需任何催化剂,仅通过脉冲激光即可在常温常压条件下直接实现全水分解,同步生成氢气与过氧化氢,且光氢能量转换效率达2.1%,为绿色能源与化工产业开辟了全新技术路径。
2025-10-13
-
哥伦比亚大学研发芯片级高功率频率梳,助力数据中心光源升级
纽约,2025年10月8日—哥伦比亚大学工程与应用科学学院的研究团队研发出一种新技术,无需依赖体积庞大且成本高昂的激光器与放大器,即可构建高功率频率梳。该团队的研究成果实现了频率梳功率向芯片的集成,进而为紧凑式、高功率、多波长光源的开发提供了可能。研究人员认为,所研发的技术方法与系统可应用于先进数据中心——此类数据中心虽已采用光纤链路传输数据,但当前仍普遍依赖单波长激光器。
2025-10-11
-
飞秒光脉冲的3D可视化:用代码“看见”看不见的光
飞秒光脉冲是一种特殊的激光信号,它的体积极小(仅几微米×几微米×几十微米),却蕴含万亿瓦量级的峰值功率——由于尺度远超出肉眼可见范围,我们无法直接用眼睛观察它。但借助不到100行的MATLAB代码,就能将这种抽象的电磁波转化为可旋转、可“飞行”的3D“光子云”(俗称“光蒲公英”)。更重要的是,这一可视化结果严格遵循麦克斯韦方程,兼具科学性与直观性。
2025-10-11
-
光模块产业“卡脖子”问题剖析,从核心芯片到全产业链的突围路径
AI集群的数据流转需求突破每秒TB级,全球数据中心带宽需求呈现每两年翻倍的增长态势,光模块作为承载光信号传输的核心器件,已成为支撑数字经济发展的关键基础设施。据行业统计数据,中国企业在全球光模块市场的份额已超过60%,在下游封装与系统集成领域形成显著竞争优势。然而,深入剖析产业结构可见,我国光模块产业呈现“倒金字塔”式发展格局——真正制约产业高质量发展、形成“卡脖子”风险的环节,并非下游组装领域,而是光模块的核心组件“激光器芯片”,以及支撑芯片制造的上游材料与设备体系。
2025-10-11