揭秘半导体材料:SiC(碳化硅),不只是半导体那么简单!
因为半导体行业的发展,有一种材料这几年越来越热门,它就是SiC(碳化硅)。这不仅仅是一种普通的半导体材料,它以其独特的性能和广泛的应用,在很多领域都有广泛的应用。

首先,让我们来扒一扒SiC的基本性质。它可不是单一的,拥有多种晶体结构,比如立方3C、六角4H和6H,还有菱方15R等等。这些不同的结构,让SiC拥有了多样的性能特点,简直就是一个多才多艺的小能手。
SiC的特性也是杠杠的。它的禁带宽度大,这意味着它能在高温、高压等极端环境下稳定工作,就像一个不怕热不怕冷的超人。而且,它的临界击穿电场强度大,热导率高,饱和电子漂移速率大,这些都让它在功率半导体器件领域大放异彩。不仅如此,SiC硬度高,化学稳定性好,还是外延生长GaN(氮化镓)的优质衬底材料,真是全能选手啊!
在研究进展方面,SiC单晶的制备技术不断取得突破,为高温、高频、大功率电子器件的发展奠定了基础。比如,以SiC为衬底的高亮和超高亮度蓝绿InGaN(铟镓氮)基LED已经在照明领域展现出出色的性能。此外,SiC肖特基势垒管、SiCMOSFET(金属-氧化物-半导体场效应晶体管)、p型沟道SiCIGBT(绝缘栅双极型晶体管)等器件也在不断发展和完善。
SiC半导体器件的应用领域也是相当广泛。在功率半导体领域,SiC功率二极管(如SBD、JBS、p-i-n)和SiC功率晶体管(如MOSFET、JFET、BJT、IGBT、晶闸管)等器件,凭借其高效、高温、高压等特性,被广泛应用于传统工业和新能源领域,如电动汽车的充电桩、太阳能和风能发电系统等,有效提高了能源转换效率和系统的稳定性。
在传感器方面,传统的压力传感器在恶劣环境下往往表现不佳,而SiC高温传感器则大显身手。它包括高温温度传感器、高温压力传感器、高温气敏传感器等,能够在高温、高腐蚀等极端环境中准确测量各种参数,为工业生产和科学研究提供了可靠的数据支持。
在光电探测领域,SiC也是制备紫外光电探测器的首选材料之一。与传统的Si(硅)紫外光电探测器相比,SiC紫外光电探测器具有更高的灵敏度和更好的稳定性,在航空航天、军事、环境监测等领域发挥着重要作用。

而SiC(碳化硅)的加工离不开激光加工设备,欧光科技的激光设备设计灵活性极高,能够适配纳秒、皮秒和飞秒激光器,这意味着它能够根据不同的材料特性和加工需求,选择最合适的激光器进行工作。此外,设备支持多种波长的激光输出,进一步拓宽了其应用范围,使其能够处理更多种类的材料。
SiC不仅仅是一种半导体材料,它是一个多面手,无论是在功率器件、传感器还是光电探测器领域,都有着不可替代的作用。
-
什么是远像技术?重塑室内用眼场景,助力近视科学防控
长时间室内看近已成为普遍生活状态——学生需上网课、读写作业,上班族要紧盯电脑、处理文案,长时间近距离用眼带来的视觉疲劳与近视风险,成为亟待解决的健康难题。在此背景下,“远像技术”凭借“化近为远”的核心逻辑,为室内舒适用眼提供了科学解决方案,更推动近视防控理念从被动矫正向主动干预升级。
2025-12-22
-
色散波捷变光频分技术:微梳基低相位噪声微波信号源的突破性进展
光频分技术凭借光学域谐振系统的卓越频率稳定性,正推动计时与高性能电信号源领域的技术革新。美国加州理工学院Qing-XinJi、WeiZhang及KerryVahala等研究人员提出一种基于色散波捷变微梳的两点光频分(2P-OFD)技术,成功实现了具有创纪录低相位噪声的微波信号源。该系统通过三耦合环结构微梳发射的频率可调单模色散波定义光谱端点,以高Q因子全固态无真空法布里-珀罗腔为频率基准,结合混合封装技术,在光子芯片平台上达成了优异的相位噪声性能与长期稳定性。相关研究成果发表于《NaturePhotonics》,为微梳基信号源跻身大型微波源性能梯队、实现现场部署奠定了关键基础。
2025-12-22
-
平面反射镜与球面镜面形检测的核心技术差异探析
在光学工程与精密制造领域,面形精度是决定光学元件光束传输效率、成像质量及系统稳定性的核心指标。平面反射镜与球面镜作为两类基础且应用广泛的光学核心部件,因其几何结构的本质差异,在面形检测的技术原理、核心指标体系、检测方法及设备要求等方面形成显著区别。本文从技术本质出发,系统剖析二者的检测差异,为高精度光学制造、检测及系统集成提供理论与工程实践参考。
2025-12-19
-
显微镜物镜清洁规范,保障成像质量的关键操作指南
显微镜物镜作为核心光学部件,其表面洁净度直接决定成像清晰度与数据准确性。灰尘、指纹残留及干涸的水/油浸液,会导致光线散射、分辨率下降,进而影响实验结果的可靠性。为规范物镜清洁操作,确保设备性能稳定,结合专业实践经验,制定本清洁指南。
2025-12-19
