激光器件的激光损伤阈值详解
激光损伤阈值(LIDT)是光学器件推测的损伤概率为零的最高激光辐射量,指定激光加工设备在损伤发生前能够承受的最大激光能量密度(脉冲激光器)或最大激光强度(连续波激光器)。然而,LIDT不能被视为低于此值则绝对不会发生损伤的能量密度,而是低于此值则损伤概率小于临界风险水平的能量密度,风险水平取决于多个因素。

激光强度是指单位面积的光功率,通常以W/cm²为单位测量。最常见的强度分布包括平顶光束和高斯光束,高斯光束的峰值能量密度是具有相同光功率的平顶光束的两倍,其有效直径随能量密度的增加而增加,导致激光诱导损伤的概率升高。对于连续波激光器,损伤通常是由于光学镀膜或基片吸收引起的热效应造成的,胶结光学器件的连续波损伤阈值往往较低,了解CWLIDT规格需了解激光器的波长、光束直径、功率密度和强度分布等。而脉冲激光器以给定重复频率发射激光能量的离散脉冲,每个脉冲的能量与平均功率成正比,与激光器的重复频率成反比,LIDT指定为以J/cm²为单位的能量密度,损伤阈值取决于脉冲持续时间,不同脉冲宽度或重复率的激光系统损伤机制不同。
激光损伤可能由多种机制引起,除了热积累和介质击穿之外,还可能由激光与某种缺陷的相互作用引起,缺陷包括研磨和抛光过程留下的表面下损伤、极小颗粒或镀膜上的金属元素等。脉冲持续时间对导致激光损伤的机制有很大的影响,不同的损伤机制产生不同的激光诱导损伤形态。

LIDT的测试方法是接受测试的光学器件暴露在一定程度的激光能量密度下,然后进行检测,通常使用诺玛斯基型微分干涉差(DIC)显微镜进行检查,然后增加能量密度,并重复暴露和检查步骤,直到在光学器件上观察到损伤。测试类型包括单一样本测试和多样本测试。数据处理通过对测试数据进行线性外推来确定损伤概率为零的激光能量密度,从而确定光学器件的指定LIDT,但这是线性拟合数据,而不是真正的线性数据,威布尔和伯尔分布为LIDT数据提供了更精确的拟合。由于没有一种激光是完美的,所以有必要增加一个安全系数,选择一个LIDT高于激光器使用条件的光学器件,一般的行业惯例是使用三分之二的安全系数。
激光损伤的检测方法包括微分干涉差显微镜检测、散射光检测、等离子体闪光监测和形态学分析。微分干涉差显微镜检测是按照ISO21254标准进行激光损伤检测最常用的方法,能观察到其他方法难以识别的缺陷,但人为判断测试结果可能会存在巨大差异。散射光检测利用目标点散射的光确定激光诱导损伤的存在和特征,但严重依赖于背景噪声的数量。等离子体闪光监测通过识别等离子体闪光或烧灼是光学器件受损的明显迹象。形态学分析包括生成激光诱导损伤点的高度图,描述损伤的大小和深度。
激光的直径会严重影响光学器件的LIDT,如果光束尺寸太大或太小,都会导致LIDT值不准确。ISO21254中允许LIDT测试的最小光束直径为0.2mm。
损伤阈值取决于波长和脉冲持续时间,如果光学器件的指定LIDT的波长或脉冲持续时间与应用情况不同,则必须在应用条件下对LIDT进行评估,尽可能避免LIDT按比例缩放。
LIDT值的不确定性是由测试激光器中的波动、损伤检测方法以及对光学器件上的缺陷采样不足引起的。
-
光学镜头精密制造的核心支柱:光心管控与AA工艺的协同演进
在光学镜头制造领域,精度是决定产品性能的核心要素,而光心管控与AA(ActiveAlignment,主动对准)工艺作为精密制造的关键环节,直接影响镜头的解析力、畸变控制等核心光学性能。从镜头光心的精准校准到AA相机模组设备的迭代优化,二者的协同发展构成了光学镜头从“可用”向“好用”再到“极致”跨越的技术基石,为车载光学、工业检测、高端安防等关键领域提供了核心支撑。
2025-12-16
-
光学分辨率的极限探索与技术提升路径
光学成像是现代科学研究、工业制造及精密观测领域的核心支撑技术,其分辨率水平直接决定了人类探索微观世界的深度与精度。“光学分辨率是否存在极限”这一命题,不仅是光学领域的基础理论课题,更深刻影响着相关技术的发展方向。本文基于光学成像的核心原理,系统梳理光学分辨率的极限边界、理论依据及提升路径。
2025-12-16
-
镜头色差成因及校正技术解析:ED镜片与APO复消色差系统
在光学成像领域,色差是影响镜头成像质量的核心问题之一。尤其是在长焦拍摄、广角边缘成像或逆光、大光比等复杂场景下,画面中出现的紫边、绿边等色边现象,以及颜色浸润、边缘模糊等问题,本质上均为色差(ChromaticAberration,简称CA)导致的成像偏差。本文将系统解析色差的物理本质、产生机制,深入探讨普通镜片组合、ED镜片及APO复消色差三种校正方案的技术原理与优劣特性,并澄清行业内关于APO镜头与锐度的认知误区。
2025-12-15
-
无干涉机制赋能宽带片上角动量复用:150纳米带宽芯片技术实现
在信息技术向超高容量、微型化方向持续演进的当下,光的角动量复用技术凭借其物理正交特性,已成为破解数据传输与存储领域性能瓶颈的关键技术路径。然而,传统基于干涉法的探测方案受限于器件体积与带宽特性,难以满足芯片级集成应用的核心需求。近日,一项发表于《Science》的研究提出了无干涉角动量复用创新方案,通过设计新型纳米环孔径结构,成功实现150纳米带宽的片上并行复用,为微型化纳米光子器件的研发与应用开辟了全新路径。
2025-12-15
