暨南大学研究揭示镁铝异种焊接接头的交替电偶腐蚀机制
在汽车、航空航天等领域轻量化需求持续增长的背景下,镁(Mg)合金与铝(Al)合金的异种连接已成为制约相关技术发展的关键挑战。近日,暨南大学科研团队在国际期刊《CorrosionScience》发表重要研究成果,创新性采用激光-电弧复合焊接技术结合钛(Ti)夹层,成功突破传统焊接技术瓶颈,并首次系统揭示了镁铝异种接头在腐蚀过程中的电偶腐蚀极性反转机制,为轻量化结构的长效应用提供了重要理论支撑与技术参考。
传统焊接技术的核心瓶颈:脆性化合物与电偶腐蚀
镁合金与铝合金因低密度、高强度的特性,成为轻量化领域的关键材料,但其异种连接长期面临两大核心挑战。一方面,传统焊接方法易在接头处生成脆性Al-Mg金属间化合物(IMCs),此类化合物会显著降低接头力学性能,导致结构承载能力大幅衰减;另一方面,镁与铝存在显著电化学电位差(Mg:-2.37V,Al:-1.66V),在含氯环境(如雨雪、盐雾等)中易引发强烈电偶腐蚀,镁合金作为阳极发生加速溶解,严重缩短结构服役寿命。
二者形成的电偶电池效应使得传统镁铝焊接接头在复杂服役环境中难以满足长期可靠性要求,成为阻碍轻量化技术进一步应用的关键障碍。
创新焊接技术:钛夹层实现结构与性能协同优化
为突破上述瓶颈,研究团队提出激光-电弧复合焊接技术,并创新性引入钛夹层。该技术通过钛的介入有效抑制了脆性Al-Mg金属间化合物的生成,焊接过程中接头处形成稳定的Al₃Ti相和Al/Mg互扩散层,不仅拓宽了搭接界面宽度,更成功制备出无缺陷的6061铝合金与AZ31B镁合金搭接接头。
微观结构分析表明,焊缝区域(WJ)呈现显著优化特征:晶粒尺寸从母材的71.69μm²细化至43.26μm²,且{0001}基面取向增强;同时,WJ区域的Al-Mn相分布均匀且细小,与母材中稀疏粗大的分布形成鲜明对比。这些微观结构的改善不仅提升了接头力学性能,更通过降低微观电偶腐蚀驱动力,为提升耐腐蚀性奠定了基础。
突破性发现:电偶腐蚀的极性反转机制
研究团队通过电化学测试、Volta电位分析、扫描电镜观察等多种手段,系统研究了焊接接头在NaCl溶液中的腐蚀行为,发现了此前未被认知的电偶腐蚀极性反转现象。
腐蚀初期,受镁铝电位差驱动,镁合金作为阳极发生加速溶解,铝则作为阴极得到保护,符合传统电偶腐蚀规律。但随着浸泡时间延长,铝的氧化产物层电阻及有效电容逐渐降低,与镁的腐蚀产物层性能趋于接近,导致二者阴阳极角色发生周期性交换。
Volta电位测试显示,焊缝区域平均Volta电位(-1.38V)高于镁合金母材(-1.43V),形成潜在微观电偶腐蚀驱动力,为极性反转提供了前提条件;扫描振动电极技术(SVET)进一步证实,焊接接头中存在阴极-阳极交换,6061/AZ31B接口处甚至观察到铝的显著溶解现象。
研究的核心价值:为轻量化结构应用提供多维支撑
该研究不仅成功制备出高性能镁铝异种焊接接头,更深入阐明其腐蚀机制,为解决轻量化材料连接的耐久性问题提供三方面关键价值:
其一,激光-电弧复合焊接结合钛夹层的技术路线,为无缺陷6061铝合金与AZ31B镁合金搭接接头的制备提供了可推广的工艺路径;其二,明确了微观结构(如晶粒取向、相分布)与腐蚀性能的关联机制,为通过结构优化提升耐腐蚀性提供了设计依据;其三,首次揭示的交替电偶腐蚀机制,颠覆了对镁铝腐蚀行为的传统认知,为针对性防护技术(如腐蚀抑制剂研发、表面改性处理等)的开发提供了理论基础。
该研究成果的转化应用,有望推动汽车、航空航天等领域轻量化结构在保证力学性能的同时显著提升抗腐蚀能力,为轻量化技术向高可靠性、长寿命方向发展奠定重要基础。
-
飞秒激光技术:引领电镜载网加工进入高精度高效时代
在微纳尺度科学研究与工业检测领域,电子显微镜(以下简称“电镜”)是揭示物质微观结构、探究材料性能机理的核心观测工具。而电镜载网作为支撑与固定待测样品的关键组件,其加工质量不仅直接决定样品固定的稳定性,更对薄膜沉积效果、器件结构分析精度及最终电镜成像质量产生关键性影响。因此,研发适配微纳领域需求的载网加工技术,已成为提升电镜应用效能的重要环节。
2025-09-30
-
光的折射与光速变化机制探析
将直筷斜插入盛水容器中,肉眼可观察到筷子在水面处呈现“弯折”形态;夏季观察游泳池时,主观感知的池底深度显著浅于实际深度——此类日常现象的本质,均是光在不同介质界面发生折射的结果。在物理学范畴中,折射现象的核心特征之一是光的传播速度发生改变。然而,“光以光速传播”是大众熟知的常识,为何光在折射过程中速度会出现变化?这一问题需从光的本质属性、介质与光的相互作用等角度展开严谨分析。
2025-09-30
-
纳米尺度光与物质强耦合新突破:定向极化激元技术开辟精准调控研究新范式
2025年9月22日,国际权威期刊《NaturePhotonics》发表了一项具有里程碑意义的研究成果:由西班牙奥维耶多大学PabloAlonso-González教授与多诺斯蒂亚国际物理中心AlexeyNikitin教授联合领衔的研究团队,首次通过实验实现了纳米尺度下传播型极化激元与分子振动的定向振动强耦合(directionalvibrationalstrongcoupling,VSC)。该突破不仅为极化激元化学领域拓展了全新研究维度,更推动“光与物质相互作用的按需调控”从理论构想迈向实验验证阶段。
2025-09-30
-
从传统工艺到原子级精控了解超光滑镜片加工技术的六大核心路径
超光滑镜片作为光刻机、空间望远镜、激光雷达等高端光学系统的核心元件,其表面微观粗糙度需达到原子级水平(通常要求均方根粗糙度RMS<0.5nm),以最大限度降低光散射损耗,保障系统光学性能。前文已围绕超光滑镜片的定义、潜在危害及检测方法展开探讨,本文将系统梳理其加工技术体系,从奠定行业基础的传统工艺,到支撑当前高精度需求的先进技术,全面解析实现原子级光滑表面的六大核心路径。
2025-09-30