暨南大学研究揭示镁铝异种焊接接头的交替电偶腐蚀机制
在汽车、航空航天等领域轻量化需求持续增长的背景下,镁(Mg)合金与铝(Al)合金的异种连接已成为制约相关技术发展的关键挑战。近日,暨南大学科研团队在国际期刊《CorrosionScience》发表重要研究成果,创新性采用激光-电弧复合焊接技术结合钛(Ti)夹层,成功突破传统焊接技术瓶颈,并首次系统揭示了镁铝异种接头在腐蚀过程中的电偶腐蚀极性反转机制,为轻量化结构的长效应用提供了重要理论支撑与技术参考。

传统焊接技术的核心瓶颈:脆性化合物与电偶腐蚀
镁合金与铝合金因低密度、高强度的特性,成为轻量化领域的关键材料,但其异种连接长期面临两大核心挑战。一方面,传统焊接方法易在接头处生成脆性Al-Mg金属间化合物(IMCs),此类化合物会显著降低接头力学性能,导致结构承载能力大幅衰减;另一方面,镁与铝存在显著电化学电位差(Mg:-2.37V,Al:-1.66V),在含氯环境(如雨雪、盐雾等)中易引发强烈电偶腐蚀,镁合金作为阳极发生加速溶解,严重缩短结构服役寿命。
二者形成的电偶电池效应使得传统镁铝焊接接头在复杂服役环境中难以满足长期可靠性要求,成为阻碍轻量化技术进一步应用的关键障碍。
创新焊接技术:钛夹层实现结构与性能协同优化
为突破上述瓶颈,研究团队提出激光-电弧复合焊接技术,并创新性引入钛夹层。该技术通过钛的介入有效抑制了脆性Al-Mg金属间化合物的生成,焊接过程中接头处形成稳定的Al₃Ti相和Al/Mg互扩散层,不仅拓宽了搭接界面宽度,更成功制备出无缺陷的6061铝合金与AZ31B镁合金搭接接头。
微观结构分析表明,焊缝区域(WJ)呈现显著优化特征:晶粒尺寸从母材的71.69μm²细化至43.26μm²,且{0001}基面取向增强;同时,WJ区域的Al-Mn相分布均匀且细小,与母材中稀疏粗大的分布形成鲜明对比。这些微观结构的改善不仅提升了接头力学性能,更通过降低微观电偶腐蚀驱动力,为提升耐腐蚀性奠定了基础。
突破性发现:电偶腐蚀的极性反转机制
研究团队通过电化学测试、Volta电位分析、扫描电镜观察等多种手段,系统研究了焊接接头在NaCl溶液中的腐蚀行为,发现了此前未被认知的电偶腐蚀极性反转现象。
腐蚀初期,受镁铝电位差驱动,镁合金作为阳极发生加速溶解,铝则作为阴极得到保护,符合传统电偶腐蚀规律。但随着浸泡时间延长,铝的氧化产物层电阻及有效电容逐渐降低,与镁的腐蚀产物层性能趋于接近,导致二者阴阳极角色发生周期性交换。
Volta电位测试显示,焊缝区域平均Volta电位(-1.38V)高于镁合金母材(-1.43V),形成潜在微观电偶腐蚀驱动力,为极性反转提供了前提条件;扫描振动电极技术(SVET)进一步证实,焊接接头中存在阴极-阳极交换,6061/AZ31B接口处甚至观察到铝的显著溶解现象。
研究的核心价值:为轻量化结构应用提供多维支撑
该研究不仅成功制备出高性能镁铝异种焊接接头,更深入阐明其腐蚀机制,为解决轻量化材料连接的耐久性问题提供三方面关键价值:
其一,激光-电弧复合焊接结合钛夹层的技术路线,为无缺陷6061铝合金与AZ31B镁合金搭接接头的制备提供了可推广的工艺路径;其二,明确了微观结构(如晶粒取向、相分布)与腐蚀性能的关联机制,为通过结构优化提升耐腐蚀性提供了设计依据;其三,首次揭示的交替电偶腐蚀机制,颠覆了对镁铝腐蚀行为的传统认知,为针对性防护技术(如腐蚀抑制剂研发、表面改性处理等)的开发提供了理论基础。
该研究成果的转化应用,有望推动汽车、航空航天等领域轻量化结构在保证力学性能的同时显著提升抗腐蚀能力,为轻量化技术向高可靠性、长寿命方向发展奠定重要基础。
-
突破传统技术瓶颈超短耗散拉曼孤子实现创新性突破——光纤谐振腔技术迎来革命性革新
超短光脉冲与宽带频率梳作为电信通信、人工智能、天文观测等领域的核心技术支撑,其性能水平直接影响相关领域的应用精度与运行效率。长期以来,传统技术体系始终面临显著技术瓶颈:微谐振器虽能生成短脉冲,却存在梳间距过大的固有缺陷;光纤谐振器虽可实现精细间距输出,却难以突破百飞秒级脉冲持续时间的限制。近日,新西兰奥克兰大学与华南理工大学联合研究团队在《NaturePhotonics》发表的最新研究成果,通过相位相干光脉冲驱动克尔谐振腔的创新方案,成功实现持续时间远低于100飞秒的超短耗散拉曼孤子,为解决这一长期存在的技术难题提供了创新性解决方案。
2025-11-18
-
什么是光线传输矩阵?为何说它是激光工程领域的标准化分析核心工具?
在激光器设计、谐振腔优化及光束质量调控等关键技术场景中,光线传输规律的精准把控直接决定系统整体性能。传统光学计算依赖复杂公式推导,效率低下且易出错,而光线传输矩阵通过将复杂光学变换转化为标准化矩阵运算,为光线轨迹量化分析提供了高效解决方案,成为激光技术研发过程中不可或缺的核心支撑工具。
2025-11-18
-
高斯光束在激光传输中的标准形态与核心应用原理
激光测距的精准聚焦、光纤通信的远距离稳定传输、激光医疗的精准靶向作用——这些现代激光技术的实现,均以高斯光束为核心支撑。作为激光传输的“标准形态”,高斯光束之所以能成为光学工程领域的核心模型,其背后蕴含着严密的理论推导与显著的应用优势,下文将从理论基础、核心参数、技术优势及应用场景展开系统阐述。
2025-11-18
-
光学设计关键技术,基于材料替换的公差灵敏度优化研究
光学系统设计的核心目标是实现“高性能与可制造性的统一”。在实际工程应用中,部分方案虽表面满足光学性能指标,且结构设计相近,但因公差灵敏度过高,易导致加工成本激增、交付周期延长,甚至无法满足量产需求。材料选择作为光学设计的核心环节,不仅影响光学性能调控,更是优化公差特性的关键变量,相关实践研究具有重要工程价值。
2025-11-18
