阶跃折射率双包层光纤:低损耗紧凑型光子灯笼的突破性进展
随着虚拟现实、物联网及云计算等技术的迅猛发展,传统标准单模光纤传输系统正逐步接近其容量极限。模分复用技术通过将线偏振或轨道角动量模式作为独立传输信道,成为突破容量瓶颈的关键途径。在此背景下,高性能的模式复用/解复用器成为该技术实用化的核心支撑,而光子灯笼凭借低损耗、工作波长范围宽等优势,已成为该领域的研究焦点。
传统光子灯笼的发展面临重大挑战:为满足绝热标准,其锥形过渡长度与模式数的平方成正比,当模式数增加时,长度会变得过长,严重制约了设备的小型化及实用化进程。针对这一问题,广东工业大学秦玉文教授团队取得了突破性进展——提出并实验实现了基于阶跃折射率双包层光纤的低损耗紧凑型光子灯笼,相关成果发表于《OpticsLetters》。
该研究的创新点在于巧妙借助阶跃折射率双包层光纤(SI-DCF)的结构特性,显著降低了光纤锥形加工过程中的模场直径膨胀比。研究人员通过对比改进的标准单模光纤、渐变折射率光纤与阶跃折射率双包层光纤三种结构,发现SI-DCF可将模场直径膨胀比从77.73%降至38.81%。这一关键突破直接促使3模和6模光子灯笼的锥形过渡长度减少一半以上。
实验数据充分验证了该设计的优越性。团队制作的3模光子灯笼采用1.5厘米的锥形长度,插入损耗即小于0.2dB;与商用少模光纤拼接后,在C波段的平均插入损耗低至0.6dB,LP11模纯度超过13dB。更重要的是,传输矩阵测量显示,该光子灯笼在1550nm处的模式耦合小于-10dB,有效抑制了模式间干扰,大幅提升了传输稳定性。
从技术原理来看,阶跃折射率双包层光纤的独特结构在锥形过渡过程中发挥了关键作用。其内层包层可有效抑制模场扩展,降低对绝热标准的严苛要求,使更短的锥形长度下即可实现模式的稳定传输。相比之下,传统渐变折射率光纤虽可缩短长度,但其双层结构制造难度较大;而减小包层/纤芯比的方案需额外的光纤加工工艺,增加了生产成本。
此项研究的意义不仅体现于技术指标的提升,更在于为高模数光子灯笼的实用化奠定了基础。随着模分复用技术向更高模式数发展,设备的小型化、低损耗及易制造性成为核心需求。阶跃折射率双包层光纤基光子灯笼在保持高性能的同时,显著降低了体积与损耗,为大容量光通信系统的集成应用提供了全新方案。
未来,随着该技术的进一步优化,有望实现更高模式数光子灯笼的制造,推动模分复用系统在超高速通信、大规模数据中心互联等领域的广泛应用,为突破现有光纤传输容量极限提供关键支撑。
-
飞秒激光技术:引领电镜载网加工进入高精度高效时代
在微纳尺度科学研究与工业检测领域,电子显微镜(以下简称“电镜”)是揭示物质微观结构、探究材料性能机理的核心观测工具。而电镜载网作为支撑与固定待测样品的关键组件,其加工质量不仅直接决定样品固定的稳定性,更对薄膜沉积效果、器件结构分析精度及最终电镜成像质量产生关键性影响。因此,研发适配微纳领域需求的载网加工技术,已成为提升电镜应用效能的重要环节。
2025-09-30
-
光的折射与光速变化机制探析
将直筷斜插入盛水容器中,肉眼可观察到筷子在水面处呈现“弯折”形态;夏季观察游泳池时,主观感知的池底深度显著浅于实际深度——此类日常现象的本质,均是光在不同介质界面发生折射的结果。在物理学范畴中,折射现象的核心特征之一是光的传播速度发生改变。然而,“光以光速传播”是大众熟知的常识,为何光在折射过程中速度会出现变化?这一问题需从光的本质属性、介质与光的相互作用等角度展开严谨分析。
2025-09-30
-
纳米尺度光与物质强耦合新突破:定向极化激元技术开辟精准调控研究新范式
2025年9月22日,国际权威期刊《NaturePhotonics》发表了一项具有里程碑意义的研究成果:由西班牙奥维耶多大学PabloAlonso-González教授与多诺斯蒂亚国际物理中心AlexeyNikitin教授联合领衔的研究团队,首次通过实验实现了纳米尺度下传播型极化激元与分子振动的定向振动强耦合(directionalvibrationalstrongcoupling,VSC)。该突破不仅为极化激元化学领域拓展了全新研究维度,更推动“光与物质相互作用的按需调控”从理论构想迈向实验验证阶段。
2025-09-30
-
从传统工艺到原子级精控了解超光滑镜片加工技术的六大核心路径
超光滑镜片作为光刻机、空间望远镜、激光雷达等高端光学系统的核心元件,其表面微观粗糙度需达到原子级水平(通常要求均方根粗糙度RMS<0.5nm),以最大限度降低光散射损耗,保障系统光学性能。前文已围绕超光滑镜片的定义、潜在危害及检测方法展开探讨,本文将系统梳理其加工技术体系,从奠定行业基础的传统工艺,到支撑当前高精度需求的先进技术,全面解析实现原子级光滑表面的六大核心路径。
2025-09-30