阶跃折射率双包层光纤:低损耗紧凑型光子灯笼的突破性进展
随着虚拟现实、物联网及云计算等技术的迅猛发展,传统标准单模光纤传输系统正逐步接近其容量极限。模分复用技术通过将线偏振或轨道角动量模式作为独立传输信道,成为突破容量瓶颈的关键途径。在此背景下,高性能的模式复用/解复用器成为该技术实用化的核心支撑,而光子灯笼凭借低损耗、工作波长范围宽等优势,已成为该领域的研究焦点。
传统光子灯笼的发展面临重大挑战:为满足绝热标准,其锥形过渡长度与模式数的平方成正比,当模式数增加时,长度会变得过长,严重制约了设备的小型化及实用化进程。针对这一问题,广东工业大学秦玉文教授团队取得了突破性进展——提出并实验实现了基于阶跃折射率双包层光纤的低损耗紧凑型光子灯笼,相关成果发表于《OpticsLetters》。
该研究的创新点在于巧妙借助阶跃折射率双包层光纤(SI-DCF)的结构特性,显著降低了光纤锥形加工过程中的模场直径膨胀比。研究人员通过对比改进的标准单模光纤、渐变折射率光纤与阶跃折射率双包层光纤三种结构,发现SI-DCF可将模场直径膨胀比从77.73%降至38.81%。这一关键突破直接促使3模和6模光子灯笼的锥形过渡长度减少一半以上。
实验数据充分验证了该设计的优越性。团队制作的3模光子灯笼采用1.5厘米的锥形长度,插入损耗即小于0.2dB;与商用少模光纤拼接后,在C波段的平均插入损耗低至0.6dB,LP11模纯度超过13dB。更重要的是,传输矩阵测量显示,该光子灯笼在1550nm处的模式耦合小于-10dB,有效抑制了模式间干扰,大幅提升了传输稳定性。
从技术原理来看,阶跃折射率双包层光纤的独特结构在锥形过渡过程中发挥了关键作用。其内层包层可有效抑制模场扩展,降低对绝热标准的严苛要求,使更短的锥形长度下即可实现模式的稳定传输。相比之下,传统渐变折射率光纤虽可缩短长度,但其双层结构制造难度较大;而减小包层/纤芯比的方案需额外的光纤加工工艺,增加了生产成本。
此项研究的意义不仅体现于技术指标的提升,更在于为高模数光子灯笼的实用化奠定了基础。随着模分复用技术向更高模式数发展,设备的小型化、低损耗及易制造性成为核心需求。阶跃折射率双包层光纤基光子灯笼在保持高性能的同时,显著降低了体积与损耗,为大容量光通信系统的集成应用提供了全新方案。
未来,随着该技术的进一步优化,有望实现更高模式数光子灯笼的制造,推动模分复用系统在超高速通信、大规模数据中心互联等领域的广泛应用,为突破现有光纤传输容量极限提供关键支撑。
-
光学镜头加工三大核心技术解析
光学镜头作为现代科技领域的关键组件,广泛应用于消费电子、工业检测、航空航天及科研等诸多领域,其加工技术直接影响产品性能。目前,光学镜头加工主要依托注塑成型法、模压成型法及冷加工成型法三大核心技术,三者在精度控制、生产效率及适用场景上各具特点,共同构成了光学制造领域的技术体系。
2025-07-04
-
LPO与CPO光互连技术的双线演进,将开启怎样的发展路径?
在数据中心算力需求呈爆发式增长的背景下,光互连技术正经历前所未有的变革。线性驱动可插拔光学(LPO)与共封装光学(CPO)作为两条并行的技术主线,从不同维度推动光互连向更低功耗、更高密度、更优成本方向演进,正重塑数据中心的底层架构逻辑。
2025-07-04
-
暨南大学研究揭示镁铝异种焊接接头的交替电偶腐蚀机制
在汽车、航空航天等领域轻量化需求持续增长的背景下,镁(Mg)合金与铝(Al)合金的异种连接已成为制约相关技术发展的关键挑战。近日,暨南大学科研团队在国际期刊《CorrosionScience》发表重要研究成果,创新性采用激光-电弧复合焊接技术结合钛(Ti)夹层,成功突破传统焊接技术瓶颈,并首次系统揭示了镁铝异种接头在腐蚀过程中的电偶腐蚀极性反转机制,为轻量化结构的长效应用提供了重要理论支撑与技术参考。
2025-07-04
-
阶跃折射率双包层光纤:低损耗紧凑型光子灯笼的突破性进展
随着虚拟现实、物联网及云计算等技术的迅猛发展,传统标准单模光纤传输系统正逐步接近其容量极限。模分复用技术通过将线偏振或轨道角动量模式作为独立传输信道,成为突破容量瓶颈的关键途径。在此背景下,高性能的模式复用/解复用器成为该技术实用化的核心支撑,而光子灯笼凭借低损耗、工作波长范围宽等优势,已成为该领域的研究焦点。
2025-07-04