LPO与CPO光互连技术的双线演进,将开启怎样的发展路径?
在数据中心算力需求呈爆发式增长的背景下,光互连技术正经历前所未有的变革。线性驱动可插拔光学(LPO)与共封装光学(CPO)作为两条并行的技术主线,从不同维度推动光互连向更低功耗、更高密度、更优成本方向演进,正重塑数据中心的底层架构逻辑。
光互连的核心组件:从信号转换到数据转发的协同体系
光互连技术的高效运行,依赖三大核心组件的精密协同。光模块作为光电转换的关键桥梁,一端连接电信号系统,另一端接入光信号传输链路——发射端通过激光器将电信号调制为光信号,接收端借助探测器将光信号还原为电信号,同时支持从100G到1.6T的多速率标准,可满足50米至2公里的不同传输距离需求。然而,在传统光模块中,数字信号处理器(DSP)芯片的功耗占比高达50%,已成为制约其效率提升的关键瓶颈。
光数字信号处理器(oDSP)是光模块的核心电芯片,在物料清单(BOM)成本中占比20%-30%。在数通场景中,PAM4oDSP通过4电平调制将单通道速率提升至50G/100G,并可补偿信号失真;在电信长距场景中,相干oDSP采用QPSK等相干调制技术实现高灵敏度传输。但需注意的是,800G光模块中oDSP的功耗达6-8W,已成为光模块功耗控制的主要挑战。
交换机交换芯片作为数据转发的中枢,承担高速数据帧的路由与转发功能。其支持多端口高速连接(如112GSerDes),可实现服务器与存储设备间的低延迟数据交换;同时集成PAM4调制、时钟数据恢复(CDR)及流量控制功能,保障信号完整性。在LPO方案中,交换芯片还需承担部分原由oDSP实现的信号补偿功能,如线性均衡和时钟恢复,是技术协同的重要节点。
LPO:可插拔架构的减法革新
LPO的技术突破源于对传统可插拔光模块的减法式优化。其核心特征是去DSP化:通过高线性度的Driver/TIA芯片替代DSP,取消时钟数据恢复(CDR)及复杂数字处理环节,直接降低800GLPO模块的功耗、成本与延迟。同时,LPO保留QSFP-DD/OSFP等可插拔封装形式,支持热插拔维护,适用于短距(<2km)AI算力集群及成本敏感场景。
在实际应用中,LPO的节能效益显著。以单机柜部署100个400GLPO模块为例,在电源使用效率(PUE)为1.5的环境下,年电费可节省超2000元,散热成本同步降低。更重要的是,LPO推动了供应链重构——减少对Marvell、Broadcom等DSP厂商的依赖,为Driver/TIA芯片的国产化提供了广阔空间。
不过,LPO的应用存在一定局限性。其性能依赖交换机ASIC的信号补偿能力,在异构网络中竞争力较弱,更适合同构网络场景。目前,基于OIFCEI-112G-Linear-PAM4协议,800GLPO部分产品已实现商用,但224GSerDes的技术成熟仍需进一步验证。
CPO:共封装架构的集成化革新
与LPO的减法逻辑不同,CPO通过集成化设计实现性能跃升,其技术路径沿近封装方向演进:从光学引擎与芯片同板(NPO)到芯片与光引擎共封装(CPO),信号传输距离从10厘米缩短至毫米级,功耗降低30%-50%。这种物理距离的缩短,成为突破性能瓶颈的关键。
CPO的集成形态持续深化,分为A型(2.5D封装)、B型(Chiplet封装)和C型(3D封装),逐步实现硅光芯片与交换ASIC的深度融合。硅光技术是CPO的核心支撑,其高密度光器件集成能力使CPO可承载超高带宽——1.6TCPO系统支持51.2T总带宽,延迟降至亚纳秒级,可满足AI训练集群的超高带宽需求。
但CPO的发展面临多重挑战。初期依赖专有设计(如NVIDIAQuantum-X),缺乏统一标准;且光引擎故障需整机更换,运维成本较高。不过,随着硅光技术的成熟,这一局面将逐步改善,预计2030年硅光在光器件市场的份额将达60%,为CPO的规模化应用奠定基础。
未来发展趋势:多技术协同共存的生态格局
LPO与CPO并非替代关系,而是将长期协同共存。中短期内(2025-2027年),LPO将依托成本与部署灵活性优势,在AI算力集群和中小数据中心快速渗透,预计2027年新增超800万个1.6TLPO端口;长期来看(2030年后),随着硅光工艺与生态的完善,CPO将在超大规模数据中心逐步商用,尤其在100T+速率场景中发挥核心作用。此外,传统DSP方案仍将在长距、异构网络中占据主流,并通过链路优化DSP(LinkOptimized-DSP)降低功耗。
两种技术的协同还体现在底层技术的共通性上。硅光技术既是LPO降低Driver/TIA成本的关键,也是CPO实现高密度集成的核心,成为连接两者的底层支撑。同时,3D封装和硅通孔(TSV)技术推动CPO向C型封装演进,进一步缩小体积并提升散热效率。
在标准层面,IEEE802.3和OIF的推进将加速LPO的互联互通;CPO则需构建开放生态以解决兼容性问题。
技术演进中的产业链重构
LPO与CPO的并行发展,标志着光互连技术从可插拔主导迈向集成化多元演进阶段。中短期内,LPO将以降本增效优势占据主流;长期来看,CPO凭借极致性能成为超大规模数据中心的重要选择,传统DSP方案在特定场景中持续发挥作用。
此次技术革新推动产业链深度重构:芯片厂商需在DSP与硅光领域平衡布局,光模块厂商需协调技术投入与市场需求,代工厂则需加大硅光产能建设。而统一标准的制定与开放生态的构建,将成为决定技术落地进程的关键因素。
在AI与算力需求持续增长的背景下,LPO与CPO的协同演进将为光互连技术开辟更高效、更智能的发展路径,支撑数字经济的底层算力基础设施建设。
-
飞秒激光技术:引领电镜载网加工进入高精度高效时代
在微纳尺度科学研究与工业检测领域,电子显微镜(以下简称“电镜”)是揭示物质微观结构、探究材料性能机理的核心观测工具。而电镜载网作为支撑与固定待测样品的关键组件,其加工质量不仅直接决定样品固定的稳定性,更对薄膜沉积效果、器件结构分析精度及最终电镜成像质量产生关键性影响。因此,研发适配微纳领域需求的载网加工技术,已成为提升电镜应用效能的重要环节。
2025-09-30
-
光的折射与光速变化机制探析
将直筷斜插入盛水容器中,肉眼可观察到筷子在水面处呈现“弯折”形态;夏季观察游泳池时,主观感知的池底深度显著浅于实际深度——此类日常现象的本质,均是光在不同介质界面发生折射的结果。在物理学范畴中,折射现象的核心特征之一是光的传播速度发生改变。然而,“光以光速传播”是大众熟知的常识,为何光在折射过程中速度会出现变化?这一问题需从光的本质属性、介质与光的相互作用等角度展开严谨分析。
2025-09-30
-
纳米尺度光与物质强耦合新突破:定向极化激元技术开辟精准调控研究新范式
2025年9月22日,国际权威期刊《NaturePhotonics》发表了一项具有里程碑意义的研究成果:由西班牙奥维耶多大学PabloAlonso-González教授与多诺斯蒂亚国际物理中心AlexeyNikitin教授联合领衔的研究团队,首次通过实验实现了纳米尺度下传播型极化激元与分子振动的定向振动强耦合(directionalvibrationalstrongcoupling,VSC)。该突破不仅为极化激元化学领域拓展了全新研究维度,更推动“光与物质相互作用的按需调控”从理论构想迈向实验验证阶段。
2025-09-30
-
从传统工艺到原子级精控了解超光滑镜片加工技术的六大核心路径
超光滑镜片作为光刻机、空间望远镜、激光雷达等高端光学系统的核心元件,其表面微观粗糙度需达到原子级水平(通常要求均方根粗糙度RMS<0.5nm),以最大限度降低光散射损耗,保障系统光学性能。前文已围绕超光滑镜片的定义、潜在危害及检测方法展开探讨,本文将系统梳理其加工技术体系,从奠定行业基础的传统工艺,到支撑当前高精度需求的先进技术,全面解析实现原子级光滑表面的六大核心路径。
2025-09-30