LPO与CPO光互连技术的双线演进,将开启怎样的发展路径?
在数据中心算力需求呈爆发式增长的背景下,光互连技术正经历前所未有的变革。线性驱动可插拔光学(LPO)与共封装光学(CPO)作为两条并行的技术主线,从不同维度推动光互连向更低功耗、更高密度、更优成本方向演进,正重塑数据中心的底层架构逻辑。
光互连的核心组件:从信号转换到数据转发的协同体系
光互连技术的高效运行,依赖三大核心组件的精密协同。光模块作为光电转换的关键桥梁,一端连接电信号系统,另一端接入光信号传输链路——发射端通过激光器将电信号调制为光信号,接收端借助探测器将光信号还原为电信号,同时支持从100G到1.6T的多速率标准,可满足50米至2公里的不同传输距离需求。然而,在传统光模块中,数字信号处理器(DSP)芯片的功耗占比高达50%,已成为制约其效率提升的关键瓶颈。
光数字信号处理器(oDSP)是光模块的核心电芯片,在物料清单(BOM)成本中占比20%-30%。在数通场景中,PAM4oDSP通过4电平调制将单通道速率提升至50G/100G,并可补偿信号失真;在电信长距场景中,相干oDSP采用QPSK等相干调制技术实现高灵敏度传输。但需注意的是,800G光模块中oDSP的功耗达6-8W,已成为光模块功耗控制的主要挑战。
交换机交换芯片作为数据转发的中枢,承担高速数据帧的路由与转发功能。其支持多端口高速连接(如112GSerDes),可实现服务器与存储设备间的低延迟数据交换;同时集成PAM4调制、时钟数据恢复(CDR)及流量控制功能,保障信号完整性。在LPO方案中,交换芯片还需承担部分原由oDSP实现的信号补偿功能,如线性均衡和时钟恢复,是技术协同的重要节点。
LPO:可插拔架构的减法革新
LPO的技术突破源于对传统可插拔光模块的减法式优化。其核心特征是去DSP化:通过高线性度的Driver/TIA芯片替代DSP,取消时钟数据恢复(CDR)及复杂数字处理环节,直接降低800GLPO模块的功耗、成本与延迟。同时,LPO保留QSFP-DD/OSFP等可插拔封装形式,支持热插拔维护,适用于短距(<2km)AI算力集群及成本敏感场景。
在实际应用中,LPO的节能效益显著。以单机柜部署100个400GLPO模块为例,在电源使用效率(PUE)为1.5的环境下,年电费可节省超2000元,散热成本同步降低。更重要的是,LPO推动了供应链重构——减少对Marvell、Broadcom等DSP厂商的依赖,为Driver/TIA芯片的国产化提供了广阔空间。
不过,LPO的应用存在一定局限性。其性能依赖交换机ASIC的信号补偿能力,在异构网络中竞争力较弱,更适合同构网络场景。目前,基于OIFCEI-112G-Linear-PAM4协议,800GLPO部分产品已实现商用,但224GSerDes的技术成熟仍需进一步验证。
CPO:共封装架构的集成化革新
与LPO的减法逻辑不同,CPO通过集成化设计实现性能跃升,其技术路径沿近封装方向演进:从光学引擎与芯片同板(NPO)到芯片与光引擎共封装(CPO),信号传输距离从10厘米缩短至毫米级,功耗降低30%-50%。这种物理距离的缩短,成为突破性能瓶颈的关键。
CPO的集成形态持续深化,分为A型(2.5D封装)、B型(Chiplet封装)和C型(3D封装),逐步实现硅光芯片与交换ASIC的深度融合。硅光技术是CPO的核心支撑,其高密度光器件集成能力使CPO可承载超高带宽——1.6TCPO系统支持51.2T总带宽,延迟降至亚纳秒级,可满足AI训练集群的超高带宽需求。
但CPO的发展面临多重挑战。初期依赖专有设计(如NVIDIAQuantum-X),缺乏统一标准;且光引擎故障需整机更换,运维成本较高。不过,随着硅光技术的成熟,这一局面将逐步改善,预计2030年硅光在光器件市场的份额将达60%,为CPO的规模化应用奠定基础。
未来发展趋势:多技术协同共存的生态格局
LPO与CPO并非替代关系,而是将长期协同共存。中短期内(2025-2027年),LPO将依托成本与部署灵活性优势,在AI算力集群和中小数据中心快速渗透,预计2027年新增超800万个1.6TLPO端口;长期来看(2030年后),随着硅光工艺与生态的完善,CPO将在超大规模数据中心逐步商用,尤其在100T+速率场景中发挥核心作用。此外,传统DSP方案仍将在长距、异构网络中占据主流,并通过链路优化DSP(LinkOptimized-DSP)降低功耗。
两种技术的协同还体现在底层技术的共通性上。硅光技术既是LPO降低Driver/TIA成本的关键,也是CPO实现高密度集成的核心,成为连接两者的底层支撑。同时,3D封装和硅通孔(TSV)技术推动CPO向C型封装演进,进一步缩小体积并提升散热效率。
在标准层面,IEEE802.3和OIF的推进将加速LPO的互联互通;CPO则需构建开放生态以解决兼容性问题。
技术演进中的产业链重构
LPO与CPO的并行发展,标志着光互连技术从可插拔主导迈向集成化多元演进阶段。中短期内,LPO将以降本增效优势占据主流;长期来看,CPO凭借极致性能成为超大规模数据中心的重要选择,传统DSP方案在特定场景中持续发挥作用。
此次技术革新推动产业链深度重构:芯片厂商需在DSP与硅光领域平衡布局,光模块厂商需协调技术投入与市场需求,代工厂则需加大硅光产能建设。而统一标准的制定与开放生态的构建,将成为决定技术落地进程的关键因素。
在AI与算力需求持续增长的背景下,LPO与CPO的协同演进将为光互连技术开辟更高效、更智能的发展路径,支撑数字经济的底层算力基础设施建设。
-
低密度等离子体棱镜压缩器取得突破,突破传统光学限制,赋能超高功率激光技术
激光技术的迅猛发展,持续推动着人类对极端物理现象的探索,而拍瓦级及更高功率的激光装置,更是解开高能物理、相对论光学等领域奥秘的关键工具。然而,传统激光脉冲压缩技术长期受限于光学元件的损伤阈值,成为制约激光功率提升的核心瓶颈。近日,美国密歇根大学、罗切斯特大学等机构的科研人员联合研发出基于低密度等离子体棱镜的新型脉冲压缩器,为突破这一限制带来革命性进展,相关成果发表于《HighPower Laser Scienceand Engineering》。
2025-08-18
-
从光斑到清晰成像,光学系统如何突破"模糊"极限?
当我们透过镜头观察世界时,那些清晰的图像背后,藏着光的衍射与数学模型的复杂博弈。为何遥远的恒星在望远镜中会变成光斑?光学系统如何传递图像的细节?从艾里斑到调制传递函数,这些关键概念正是解开"模糊"谜题的钥匙。
2025-08-18
-
粉末增材制造技术在掺铒石英光纤激光器中的应用研究
在光纤通信、激光加工及生物医疗等关键领域,高性能光纤激光器的需求持续攀升,而增益光纤作为其核心构成部件,其制造工艺直接决定器件的性能水平。传统制造方法虽能生产高质量增益光纤,但存在生产周期冗长、成本高昂及成分调控灵活性不足等显著局限。近期,PawelManiewski等人在《Optica》期刊发表的研究成果,提出了一种基于粉末增材制造的新型制备方案,为高性能增益光纤的研发开辟了全新路径。
2025-08-18
-
偏心仪在透镜及镜片加工中的应用解析
偏心仪在透镜及镜片加工领域中应用广泛,其核心作用在于通过精密检测与校准,确保光学元件的几何中心与光轴保持高度一致性,进而保障光学系统的成像质量与性能稳定性。具体应用如下:
2025-08-15