【光学资讯】基于高次谐波产生的紫外-中红外双梳光谱
光学频率梳以其卓越的频率精度和长期稳定性,在光谱学领域展现出广泛的应用潜力。双梳光谱技术作为一种新兴的测量工具,已被证实为一种强大的光谱测量技术,广泛应用于材料表征和精密计量领域。该技术具备高频率分辨率、快速测量速度以及宽广的光谱覆盖范围,能够实现多个吸收带的同时检测、复杂化学动态系统中的中间监测以及高分辨率和高灵敏度的测量。特别是在分子指纹的中红外光谱区域,大多数分子表现出强烈的基本振动跃迁和一定数量的离子吸收线,宽带双梳光谱技术能够并行检测痕量分子,灵敏度高达十亿分之一。

在近红外波段,双梳光谱技术依托商业上先进的高功率掺铒光纤激光器和钛宝石激光器等激光加工设备,结合先进的光学元器件和成熟的光子学技术,为各种非线性光谱学应用做出了贡献。此外,与泵浦探测光谱技术相结合,双梳光谱技术能够在飞秒时间尺度上实现高时间分辨率,并在兆赫频率尺度上实现高光谱分辨率,为复杂催化过程的反应机理研究提供了有力工具。
尽管在紫外区域,双梳光谱技术的影响力不及红外区域,但其高分辨率基准仍保持其主导地位。例如,大气痕量气体检测已在紫外区域中成功应用双梳光谱技术,实现了对一氧化二氮等空气污染物的高效检测。因此,获得具有简单且鲁棒性能好的宽带相干梳源对于推动双梳光谱技术的发展至关重要。

中红外波长的获得通常通过差频产生和光学参量振荡的下变频过程实现,而紫外和可见光区域则通过多步频率上转换过程实现。目前,光学频率梳在各个光谱区域独立发展,同时实现中红外和紫外波段的频率转换是一项具有挑战性的任务,特别是保持相干性方面。近年来,随着周期性极化铌酸锂波导的发展,其优异的空间限制特性显著提高了频率转换效率,为光学频率梳的相干性保持提供了新的可能性。
实验研究表明,基于光-光调制技术的中红外光学频率梳作为高次谐波过程的泵浦源,能够产生覆盖中红外到紫外区域的多个光学频率梳输出。通过精心设计的非周期极化铌酸锂波导,实现了高达九阶谐波的产生,且在实验过程中保持了良好的相干性。此外,通过双梳光谱技术在每个产生的光谱区域进行了相干性研究,验证了系统的光谱测量能力,并展示了双梳光源的光谱扩展能力。
光学频率梳及其衍生技术在光谱学领域的应用前景广阔,特别是在高分辨率和高灵敏度的测量方面展现出显著优势。未来的研究应继续探索提高转换效率和高功率宽带泵浦源的实现,以进一步提升系统性能,推动光学频率梳技术在更广泛领域的应用。
-
半导体抛光设备自动化应用及工艺质量管控要点探析
在半导体器件规模化量产进程中,抛光工艺作为保障晶圆加工精度与表面质量的核心环节,其设备自动化水平、工艺参数调控能力、检测体系完善度及异常处置效率,直接决定生产效率、工艺稳定性与产品良率。本文从抛光设备自动化配置要求、核心工艺参数调控、关键检测指标界定及常见工艺异常处理四个维度,系统阐述半导体抛光工艺的质量管控核心要点,为半导体抛光制程的标准化、精细化实施提供参考。
2026-02-12
-
硅晶圆激光切割核心技术深度解析:原理、工艺与质量把控
在半导体制造产业链中,硅晶圆切割是芯片成型的关键工序,其加工精度与效率直接影响芯片良品率和产业发展节奏。随着微电子器件向微型化、薄型化升级,传统切割方式的弊端逐渐显现,激光切割凭借高精度、低损伤的技术优势成为行业主流。本文从激光切割系统的硬件构成出发,深入拆解隐形切割与消融切割两大核心工艺,解析光斑、焦点的精度控制逻辑,并探讨切割质量的评价维度与效率平衡策略,系统梳理硅晶圆激光切割的核心技术体系
2026-02-12
-
无掩模激光直写技术研究概述
无掩模激光直写技术作为微纳加工领域的先进光刻技术,摒弃了传统光刻工艺对掩模版的依赖,凭借直接写入的核心特性,在复杂微纳结构制备、高精度图案加工中展现出独特优势,成为微纳加工领域的重要技术方向。本文从工作原理与流程、技术特性、现存挑战、分辨率与对准参数、核心设备及厂务动力配套要求等方面,对该技术进行全面梳理与阐述。
2026-02-12
-
SiC功率器件的高温时代:封装成为行业发展核心瓶颈
在半导体功率器件技术迭代进程中,碳化硅(SiC)凭借高温工作、高电流密度、高频开关的核心优势,成为推动功率半导体升级的关键方向,其普及大幅提升了器件的功率密度与工作效率,为功率半导体行业发展带来全新机遇。但与此同时,行业发展的核心瓶颈正悄然从芯片设计与制造环节,转移至封装层面。当SiC将功率器件的工作温度与功率密度不断推高,芯片本身已具备承受更高应力的能力,而封装环节的材料适配、热路径设计等问题却日益凸显,高温与快速功率循环叠加的工况下,焊料与热路径成为决定SiC功率模块寿命的核心因素,封装技术的发展水平,正成为制约SiC功率器件产业化落地与长期可靠应用的关键。
2026-02-12
