激光器中谐振腔和高斯光束
激光器的谐振腔和高斯光束之间存在相互作用。谐振器中的反射镜或反射表面决定了激光的模式(即高斯光束的形状和参数)。在激光器设计和优化过程中,为了获得理想的激光输出,通常需要仔细调节和控制谐振腔和高斯光束。这里简单介绍一下激光器中的谐振腔和高斯光束,这是两个密切相关的概念。

1. 谐振腔:在激光器中,谐振腔是一个重要的组成部分。它由两个平行的反射镜或反射面组成,形成一个封闭的腔体。在谐振腔中,电子从一个能级激发到更高能级,然后跳回到较低能级并释放光子。这些光子在谐振腔内来回反弹,与电子相互作用形成增益。当增益超过吸收、散射等引起的损耗时,就会产生激光。
2. 高斯光束:在激光器中,高斯光束是一种特定的激光模式。它描述了光束的横向电场分布,是所有激光输出的基本模式。高斯光束的电场分布在截面上呈现高斯分布,即中部最大,向两侧逐渐减小。高斯光束的参数包括光束宽度、瑞利距离和Bowtie形状等。这些参数对于激光加工和测量应用非常重要。
延伸阅读:
一.在激光器中,谐振腔主要功能包括:
1.模式选择:谐振腔允许特定的光场分布模式在其中来回反射,并通过干涉增强这些模式的强度。对于高斯光束,TEM 00模式是最基本、最低阶的横模。它具有最小的光束直径和最高的空间相干性。当没有外部干扰时,激光器通常优先在谐振腔中形成这种模式 。
2.增益饱和和放大:在激光工作材料内部,泵浦源提供的能量使原子或分子达到激发态,当这些粒子在谐振腔内反向分布下通过受激发射过程释放能量时,满足特定的频率、方向、模式调节的光子在来回穿过增益介质时被连续放大。
3.单模或多模操作:设计合适的腔长和镜面曲率可以控制腔内可以稳定存在的模式数量。理想的单模激光器只支持TEM 00模式稳定存在,发射高斯光束;而多模激光器可以同时支持多个横模,每个模式都是独立的高斯光束,但可能有不同的腰带尺寸和发散角。
4.提高相干性:通过限制腔内激光模式的数量,可以显着提高激光的相干性,这对于许多精密应用至关重要。
二.高斯光束是一种理想的光束模型,具有以下特点:
1.光斑中心的强度最高。
2.随着距光斑中心距离的增加,光强度呈指数衰减。
3.其传播特性可以用高斯光束传输方程描述,包括束腰位置、束腰宽度、远场发散角等参数。
-
蓝玻璃滤光片研磨抛光的逻辑与实践
在现代光学设备领域,蓝玻璃滤光片是手机摄像头、医疗仪器等产品的核心组件,其核心功能是选择性透过蓝光、阻挡杂色光干扰,而实现这一功能的关键,在于一套兼具科学性与实用性的研磨抛光工艺。从粗糙毛坯到微米级精密元件,蓝玻璃的“瘦身”(精准塑形)与“美颜”(表面亮化)之旅,遵循着清晰的逻辑脉络,融合了技术选择、风险控制与价值平衡的多重考量。
2026-02-06
-
光纤远端集成微型衍射神经网络:全光图像传输技术实现革命性突破
多模光纤因高容量传输优势,在通信、医疗、量子信息等领域具有不可替代的地位,但高散射与模式色散导致的图像失真问题,长期制约其在直接成像场景的应用。传统解决方案依赖复杂台式光学系统与电子信号处理,不仅体积庞大,且传输延迟、能量消耗居高不下。近日,上海理工大学顾敏、张启明团队在《Nature Photonics》发表的重磅成果,通过在多模光纤远端集成微型衍射神经网络,首次实现无失真全光直接图像传输,为紧凑型光子系统发展开辟全新路径。
2026-02-06
-
超快激光微纳焊接:微纳制造领域的精准连接革命
在现代制造业向轻量化、小型化、高精度加速迈进的浪潮中,微电子、光电子及微机电系统(MEMS)等领域对微纳结构的连接与集成提出了严苛要求。传统焊接技术如长脉冲激光加工、电火花加工等,因热影响区(HAZ)显著,易引发材料变形、微裂纹及重铸层等问题,难以满足纳米尺度下的高精度互连需求。在此背景下,超快激光微纳焊接技术凭借其独特的加工优势,成为突破传统工艺瓶颈的核心解决方案,为精密制造注入了全新活力。
2026-02-06
-
计算光谱成像:从实验室到产业界的高维视觉革命
光谱,作为物质固有的“光学指纹”,承载着超越人眼可见范围的物理化学信息。传统光谱成像技术虽能解析这一信息宝库,却长期受困于“慢扫描、高成本、大体积”的三重桎梏——依赖机械扫描的成像模式导致单次采集耗时冗长,复杂的光学分光系统推高了设备成本与体积,难以满足实时监测、便携应用等场景需求。而“同色异谱”的行业痛点,更让传统成像技术在精准识别领域举步维艰。在此背景下,计算光谱成像技术应运而生,以“光学编码+计算解码”的创新范式,实现了高维光谱信息的单次快门捕获与高效重建,掀起了一场从实验室走向产业界的高维视觉革命。
2026-02-05
