激光器中谐振腔和高斯光束
激光器的谐振腔和高斯光束之间存在相互作用。谐振器中的反射镜或反射表面决定了激光的模式(即高斯光束的形状和参数)。在激光器设计和优化过程中,为了获得理想的激光输出,通常需要仔细调节和控制谐振腔和高斯光束。这里简单介绍一下激光器中的谐振腔和高斯光束,这是两个密切相关的概念。
1. 谐振腔:在激光器中,谐振腔是一个重要的组成部分。它由两个平行的反射镜或反射面组成,形成一个封闭的腔体。在谐振腔中,电子从一个能级激发到更高能级,然后跳回到较低能级并释放光子。这些光子在谐振腔内来回反弹,与电子相互作用形成增益。当增益超过吸收、散射等引起的损耗时,就会产生激光。
2. 高斯光束:在激光器中,高斯光束是一种特定的激光模式。它描述了光束的横向电场分布,是所有激光输出的基本模式。高斯光束的电场分布在截面上呈现高斯分布,即中部最大,向两侧逐渐减小。高斯光束的参数包括光束宽度、瑞利距离和Bowtie形状等。这些参数对于激光加工和测量应用非常重要。
延伸阅读:
一.在激光器中,谐振腔主要功能包括:
1.模式选择:谐振腔允许特定的光场分布模式在其中来回反射,并通过干涉增强这些模式的强度。对于高斯光束,TEM 00模式是最基本、最低阶的横模。它具有最小的光束直径和最高的空间相干性。当没有外部干扰时,激光器通常优先在谐振腔中形成这种模式 。
2.增益饱和和放大:在激光工作材料内部,泵浦源提供的能量使原子或分子达到激发态,当这些粒子在谐振腔内反向分布下通过受激发射过程释放能量时,满足特定的频率、方向、模式调节的光子在来回穿过增益介质时被连续放大。
3.单模或多模操作:设计合适的腔长和镜面曲率可以控制腔内可以稳定存在的模式数量。理想的单模激光器只支持TEM 00模式稳定存在,发射高斯光束;而多模激光器可以同时支持多个横模,每个模式都是独立的高斯光束,但可能有不同的腰带尺寸和发散角。
4.提高相干性:通过限制腔内激光模式的数量,可以显着提高激光的相干性,这对于许多精密应用至关重要。
二.高斯光束是一种理想的光束模型,具有以下特点:
1.光斑中心的强度最高。
2.随着距光斑中心距离的增加,光强度呈指数衰减。
3.其传播特性可以用高斯光束传输方程描述,包括束腰位置、束腰宽度、远场发散角等参数。
-
光子晶体:让光“听话”的神奇人工结构,开启光学器件革命新篇
1987年,两位科学家Yablonovitch和John的一项发现,为光学领域埋下了一颗颠覆性的种子——他们提出,一种由电介质周期性排列构成的人工材料,能像半导体控制电子一样“囚禁”特定频率的光,这就是后来被称为“光子晶体”的神奇结构。三十多年过去,这项源于理论物理的构想,正从实验室走向现实,成为光通信、能源、传感等领域的关键技术突破口。
2025-04-30
-
密苏里大学研发荧光多离子纳米粘土材料:开启多领域定制化应用新可能
2025年4月29日,密苏里大学的研究团队宣布成功研制出一种具有革命性的纳米材料——荧光多离子纳米粘土。这种基于粘土的微小材料凭借其卓越的可定制性,在能源技术、医疗诊断、环境监测等领域展现出广阔的应用前景,相关研究成果已发表于《材料化学》杂志。
2025-04-30
-
南开大学在螺旋锥形光束研究中取得重要突破为微纳操控技术提供新工具
近日,南开大学许东野教授团队在结构光场调控领域取得重要进展,其关于螺旋锥形光束(Helico-ConicalBeams,HCBs)生成与重构的研究成果发表于国际光学权威期刊《ChineseOpticsLetters》。这项突破通过创新的光学干涉技术,实现了复杂光场的精准操控,为微纳粒子操纵、纳米制造等前沿领域提供了关键技术支撑。
2025-04-30
-
光的干涉现象:从基础物理到前沿技术的演进
阳光下悬浮的肥皂泡表面呈现出斑斓的色彩,这一常见的光学现象本质上是光的干涉效应所致。作为波动光学的核心现象,光的干涉不仅解释了自然界中的视觉奇观,更成为现代精密测量技术的理论基石。从微米级的芯片集成到千米级的引力波探测,干涉原理的应用贯穿于从微观到宏观的广阔领域,深刻推动着科学研究与工程技术的发展。
2025-04-29