手掌大小超短脉冲激光系统实现80%能量效率突破引领技术革新
超短脉冲激光器凭借超高精度特性,已广泛应用于制造、医疗及科学研究等多个领域,成为关键技术支撑。然而,传统高效短脉冲激光器普遍存在体积庞大、成本高昂的问题,严重制约了其规模化普及与场景化拓展。近日,斯图加特大学研究团队在《Nature》期刊发表重要研究成果,成功研发出一款手掌大小的新型超短脉冲激光系统,其能量转换效率高达80%,较现有技术提升两倍以上,为该领域技术发展带来革命性突破。

核心技术突破:效率与紧凑性的双重革新
能量转换效率实现质的跃升
该新型激光系统的核心优势在于其卓越的能量转换效率,实验数据显示其效率可达80%,即输入功率的80%能够被有效利用。相比之下,当前主流短脉冲激光技术的能量转换效率仅约35%,大量能量在运行过程中以热能形式损耗,不仅提升了运行成本,也限制了设备的续航与应用场景。斯图加特大学第四物理研究所所长HaraldGiessen教授表示,这一效率水平此前在短脉冲激光领域几乎难以实现,标志着该技术在能量利用层面达到新的高度。
紧凑化设计打破体积限制
与传统短脉冲激光器庞大笨重的结构不同,该新型系统采用高度集成化设计,整体尺寸仅为数平方厘米,由五个核心组件构成,可轻松置于手掌之上。在实现紧凑化的同时,其性能并未妥协,能够产生脉宽短于50飞秒(千万亿分之一秒)的超短脉冲,具备高能量瞬时释放的核心特性,可在极小空间范围内集中能量,满足高精度加工、检测与科研等场景的严苛需求。
技术创新路径:多通道设计破解行业瓶颈
长期以来,短脉冲激光技术领域面临一项核心技术瓶颈:宽带放大需依赖极短且极薄的特殊晶体,而高效放大则需要较长的晶体,在小型紧凑的光学系统中难以同时满足这两项要求。为破解这一难题,研究团队摒弃了传统“单根长晶体”或“多根短晶体串联”的设计思路,创新提出“单晶体多通道技术”。
在该系统的光学参量放大器中,发射的光脉冲会多次反复穿透同一根短晶体。每次穿透前,分离的脉冲都会经过精密的重新校准,确保相位与时间上的严格同步,从而在单根短晶体上同时实现宽带覆盖与高放大效率。论文共同作者TobiasSteinle博士指出,这一创新设计不仅简化了系统结构,更实现了“高效率、紧凑化、高稳定性”的三重目标,证明超高效率与宽带覆盖可并行实现,无需相互妥协。
应用场景拓展:多领域深度赋能
该新型激光系统具备极高的多功能性,可适用于红外光以外的多种波长范围,兼容不同类型的晶体材料与多种脉冲时长,应用场景得到进一步拓展。在工业制造领域,其高精度、低热损的特性可支撑精密元器件的微纳加工;在医学领域,能够助力非侵入式生物成像与诊断技术的升级;在科研领域,可满足量子科学研究中的分子级超高精度测量需求,同时为气体传感、环境科学研究等提供技术支撑。
研究团队表示,未来将基于现有设计理念,进一步研发小型化、轻量化、紧凑便携且可调谐的激光器,实现精确的波长控制,推动该技术在更多专业领域的深度应用。
行业动态:激光微纳制造专题征稿启动
随着超短脉冲激光技术在高精度制造领域的广泛应用,激光微纳加工已成为学术研究与技术创新的热点方向。
此次斯图加特大学研发的高效紧凑超短脉冲激光系统,不仅破解了传统技术的核心痛点,更推动超短脉冲激光技术向实用化、普及化方向迈出关键一步。未来,随着技术的持续迭代与优化,有望推动更多小型化、高性价比的激光设备涌现,为制造、医疗、科研等多个领域提供更精准、高效的技术解决方案。
-
半导体抛光设备自动化应用及工艺质量管控要点探析
在半导体器件规模化量产进程中,抛光工艺作为保障晶圆加工精度与表面质量的核心环节,其设备自动化水平、工艺参数调控能力、检测体系完善度及异常处置效率,直接决定生产效率、工艺稳定性与产品良率。本文从抛光设备自动化配置要求、核心工艺参数调控、关键检测指标界定及常见工艺异常处理四个维度,系统阐述半导体抛光工艺的质量管控核心要点,为半导体抛光制程的标准化、精细化实施提供参考。
2026-02-12
-
硅晶圆激光切割核心技术深度解析:原理、工艺与质量把控
在半导体制造产业链中,硅晶圆切割是芯片成型的关键工序,其加工精度与效率直接影响芯片良品率和产业发展节奏。随着微电子器件向微型化、薄型化升级,传统切割方式的弊端逐渐显现,激光切割凭借高精度、低损伤的技术优势成为行业主流。本文从激光切割系统的硬件构成出发,深入拆解隐形切割与消融切割两大核心工艺,解析光斑、焦点的精度控制逻辑,并探讨切割质量的评价维度与效率平衡策略,系统梳理硅晶圆激光切割的核心技术体系
2026-02-12
-
无掩模激光直写技术研究概述
无掩模激光直写技术作为微纳加工领域的先进光刻技术,摒弃了传统光刻工艺对掩模版的依赖,凭借直接写入的核心特性,在复杂微纳结构制备、高精度图案加工中展现出独特优势,成为微纳加工领域的重要技术方向。本文从工作原理与流程、技术特性、现存挑战、分辨率与对准参数、核心设备及厂务动力配套要求等方面,对该技术进行全面梳理与阐述。
2026-02-12
-
SiC功率器件的高温时代:封装成为行业发展核心瓶颈
在半导体功率器件技术迭代进程中,碳化硅(SiC)凭借高温工作、高电流密度、高频开关的核心优势,成为推动功率半导体升级的关键方向,其普及大幅提升了器件的功率密度与工作效率,为功率半导体行业发展带来全新机遇。但与此同时,行业发展的核心瓶颈正悄然从芯片设计与制造环节,转移至封装层面。当SiC将功率器件的工作温度与功率密度不断推高,芯片本身已具备承受更高应力的能力,而封装环节的材料适配、热路径设计等问题却日益凸显,高温与快速功率循环叠加的工况下,焊料与热路径成为决定SiC功率模块寿命的核心因素,封装技术的发展水平,正成为制约SiC功率器件产业化落地与长期可靠应用的关键。
2026-02-12
