土耳其毕尔肯大学实现硅内亚波长激光纳米加工突破为纳米光子器件研发开辟新路径
硅作为电子工业与微纳米光子学领域的核心基底材料,其内部纳米结构的精准可控制造一直是前沿研究的关键课题。传统"片上"制造模式将纳米功能局限于晶圆表面,而"片内"制造虽能直接在硅主体内部构建器件,却长期面临深层加工难以精准控制的技术瓶颈。近日,土耳其毕尔肯大学研究团队在《Nature Communications》发表重要成果,通过创新融合空间光束调制与各向异性播种技术,成功在硅体内实现亚波长、多维可控的纳米激光加工,为大规模纳米光子器件的研发突破了关键技术障碍。
一.突破深层加工瓶颈:创新技术实现亚波长精准控制
该研究的核心突破在于解决了晶圆深处受控激光纳米制造的基础性难题。研究团队采用结构化光束,并结合各向异性播种技术,在硅块体内部以亚波长和多维控制的方式,制造出特征尺寸小至100±20nm的纳米结构,且晶圆表面不受损伤。
具体而言,研究利用贝塞尔型调制纳秒激光脉冲诱导硅内部的光学响应。贝塞尔光束的非衍射特性,结合基于播种的局部场增强效应,实现了一维约束,形成硅内部深处的纳米平面;通过预制结构的局部和非局部播种,还实现了二维约束,制造出纳米线。这种能量约束能力强大,甚至可实现超越衍射极限的次表面纳米图案化。
激光偏振是调控纳米级对称性的另一关键参数。实验表明,当偏振设置为线性且平行于扫描方向时,纳米结构的特征尺寸会显著减小;通过系统优化相位参数(r0)和脉冲能量(Ep),可将特征尺寸进一步缩小至115±25nm,较现有技术降低一个数量级,实现了亚衍射(低于250nm)光刻能力。
二.从结构制造到功能器件:技术转化展现显著潜力
基于上述技术,研究团队不仅实现了硅内多维纳米结构的精准制造,更成功将其应用于功能器件研发。通过选择偏振、脉冲能量、扫描方向和相位调制等参数,团队采用多级纳米加工技术制造出硅内布拉格光栅——这一基于透明介质内部折射率调制的纳米光子器件,在光谱控制中展现出优异性能,实验测得其效率可达90%,与理论预测高度吻合。
研究还评估了纳米平面的线粗糙度,结果显示其在12-19nm范围内,表明该亚表面纳米图案化能力对于研发低散射的三维半导体纳米光子器件具有巨大潜力。这种体积纳米加工能力,为硅内纳米光子器件的多样化设计与制备提供了全新可能。
三.开启硅基纳米光子学新篇:应用前景广阔
此项技术突破为硅基纳米光子学领域带来了革命性进展。相较于传统表面加工,硅内深层纳米结构具有更高的集成度和稳定性,可广泛应用于波导、透镜、信息存储等核心光学器件的研发。其实现的亚波长、大规模纳米阵列制造能力,也为亚波长光子晶体、超材料等前沿领域提供了可靠的制备方案。
此外,该技术采用的纳秒激光系统成本相对较低,易于规模化应用,有望快速转化为工业级制造方案。未来,随着光束调制与播种参数的进一步优化,或可实现50nm以下更小尺寸的纳米结构制造,推动硅基光电子器件向更高精度、更复杂功能演进,为下一代光通信、量子计算等领域的突破奠定重要基础。
-
【光学材料】单晶与多晶材料的特性差异及应用研究
在半导体器件、光伏能源、航空航天等关键工业与科研领域,晶体材料的微观结构直接决定其宏观性能与应用场景适配性。单晶与多晶作为晶体材料的两大核心类别,虽同属原子周期性排列形成的固体形态,但因内部晶格结构连续性的本质差异,在性能表现、制备工艺及产业应用中呈现显著分化。深入剖析二者的结构特征与性能规律,对学术研究的精准探索及工业生产的科学选材具有重要指导意义。
2025-10-21
-
摄像头滤光片技术解析与场景化选型策略
滤光片作为调控光谱输入的关键组件,直接决定成像质量能否契合人眼视觉规律或满足机器视觉的特定需求。其技术价值源于图像传感器(CMOS/CCD)与人类视觉系统的光谱响应差异——CMOS/CCD传感器可感知4001100nm的紫外至近红外波段,而人眼仅对400700nm的可见光敏感。若不加以干预,过量红外光会导致成像色彩失真、对比度降低及清晰度劣化。红外截止滤光片(IRCutFilter)通过精准筛选入射光谱,成为解决这一核心矛盾的技术支撑。
2025-10-21
-
南京邮电大学氮化镓基PCSEL专利解析:突破蓝光激光器技术瓶颈,助力高端应用发展
在蓝光激光器领域,材料选择与器件结构设计长期制约着其性能提升与产业化推进。2023年,南京邮电大学提出“一种氮化镓基光子晶体面发射蓝光激光器及制备方法”(专利号:CN116316063A)发明专利,通过创新包覆层材料体系与制备工艺,为实现低阈值、高效率的氮化镓基光子晶体面发射激光器(PCSEL)提供了关键技术方案,对激光雷达、激光显示及光通信等高端领域的技术升级具有重要推动作用。
2025-10-21
-
精密光学振动控制测试中的标准体系与实践路径
设备精度优化与光路校准是核心关注方向,而振动控制作为保障检测结果准确性的关键环节,常被忽视。即便微米级的微小振动,也可能导致高倍显微观测失真、光刻线宽偏差,甚至影响航空光学测量数据的可靠性。当检测精度要求达到微米级及以下时,振动控制从“优化项”转变为“必备条件”。本文将系统梳理精密光学测试中的振动控制标准、光学平台减震分级及选型要点,为相关实践提供专业参考。
2025-10-21