外国研究团队开发新型分析模型解析OLED材料激子动力学机制
2025年6月9日,日本九州大学研究团队在《自然・通讯》(Nature Communications)发表重要研究成果,宣布成功构建一种高精度分析模型,系统阐释有机发光二极管(OLED)材料中激子动力学的能量转换机制。该研究为提升OLED器件使用寿命提供了关键理论支撑,并有望加速高性能有机发光材料的研发进程。
激子动力学机制:OLED材料性能优化的核心科学问题
OLED器件的发光原理基于激子(exciton)的能量跃迁过程:当材料中的电子吸收能量跃迁至高能态(激发态)后,返回基态时释放能量并产生荧光。在热激活延迟荧光(TADF)材料中,激子存在单重态(S₁)与三重态(T₁)两种能量状态,其中仅单重态激子的辐射跃迁可直接产生荧光。而三重态激子通过反向系间窜越(RISC)过程转化为单重态激子的效率,直接决定了材料的内部量子效率上限。因此,准确解析单重态与三重态之间的能量差(ΔEₛₜ),成为评估TADF材料发光效率及指导新材料设计的核心科学问题。
传统理论计算方法基于量子化学模型预测ΔEₛₜ时,受限于复杂电子行为的精确描述难度,通常需引入简化假设,导致理论预测值与实验测量值存在显著偏差。正如研究团队成员、九州大学助理教授土屋雄一(YouichiTsuchiya)所指出:"现有计算框架难以完整刻画多电子体系的激发态行为,迫使研究者在降低计算成本与保证数据精度之间进行权衡,这直接导致新材料开发过程中理论设计与实验验证的循环迭代效率低下。"
基于物理化学理论的激子动力学模型重构
针对上述挑战,九州大学研究团队基于物理化学基本原理,建立了包含三重态激子动态转移过程的全新分析模型。该模型通过构建多能级能量转移动力学方程,系统整合温度依赖性、溶剂效应及分子间相互作用等关键参数,成功解决了传统方法中"负活化能"预测偏差问题,实现了对ΔEₛₜ的高精度计算。
实验验证表明,新模型的预测精度较传统方法提升逾30%,同时将计算成本降至原方法的五分之一。以某典型TADF材料体系为例,模型预测的ΔEₛₜ值为0.049eV,与实验测量值的吻合度达到98.7%,而采用传统密度泛函理论(DFT)计算的误差则高达0.12eV。这种理论与实验数据的高度一致性,为精准评估材料发光性能及优化分子结构提供了可靠的定量分析工具。
推动OLED技术发展的双重应用价值
该研究成果在基础理论与工程应用层面均具有重要意义:
(一)器件寿命优化的理论突破
通过精确调控ΔEₛₜ值,可有效抑制三重态激子与载流子极化子的湮灭反应(TPA过程),这一机制是导致OLED材料老化的主要因素之一。参考相关研究案例,当ΔEₛₜ降低至0.05eV以下时,蓝光OLED器件的LT95寿命(亮度衰减至初始值95%的时间)可从6.9小时提升至221小时。本研究建立的模型为这类分子设计策略提供了更精准的理论指导,有望推动长寿命OLED器件的实际应用。
(二)材料开发范式的革新
传统TADF材料研发依赖"试错法",而新模型可通过理论计算直接预测材料的关键性能参数。例如,国内研究团队基于类似理论框架开发的红光TADF材料,其ΔEₛₜ值低至0.04eV,外量子效率达到28.5%,突破了传统"能隙定律"的限制。这种"理论计算-分子设计-实验验证"的闭环模式,将显著缩短新材料的研发周期,降低研发成本。
面向未来的研究展望:AI驱动的材料设计革命
研究团队透露,下一步将致力于构建融合人工智能(AI)技术的材料性能预测平台。计划通过整合多维度激子动力学数据,训练深度神经网络模型,实现从分子结构参数到器件性能指标的直接映射。这一研究方向与国际前沿进展形成协同——韩国中央大学近期开发的AI模型已实现对蓝色OLED三重态融合速率99.2%的预测准确率。通过结合量子化学计算与机器学习算法,未来有望构建覆盖材料设计、性能预测及器件优化的全链条智能化体系,推动有机光电子领域从"经验驱动"向"数据-理论双轮驱动"的研究范式转变。
"我们的目标是建立激子动力学的普适性分析框架,"土屋雄一表示,"通过跨学科方法的深度融合,最终实现新材料开发的精准化与高效化。"随着该模型在更多TADF材料体系中的验证与应用,OLED技术在柔性显示、固态照明及量子信息处理等领域的应用边界将进一步拓展。
本研究成果已于2025年6月9日正式发表于《自然・通讯》
-
低密度等离子体棱镜压缩器取得突破,突破传统光学限制,赋能超高功率激光技术
激光技术的迅猛发展,持续推动着人类对极端物理现象的探索,而拍瓦级及更高功率的激光装置,更是解开高能物理、相对论光学等领域奥秘的关键工具。然而,传统激光脉冲压缩技术长期受限于光学元件的损伤阈值,成为制约激光功率提升的核心瓶颈。近日,美国密歇根大学、罗切斯特大学等机构的科研人员联合研发出基于低密度等离子体棱镜的新型脉冲压缩器,为突破这一限制带来革命性进展,相关成果发表于《HighPower Laser Scienceand Engineering》。
2025-08-18
-
从光斑到清晰成像,光学系统如何突破"模糊"极限?
当我们透过镜头观察世界时,那些清晰的图像背后,藏着光的衍射与数学模型的复杂博弈。为何遥远的恒星在望远镜中会变成光斑?光学系统如何传递图像的细节?从艾里斑到调制传递函数,这些关键概念正是解开"模糊"谜题的钥匙。
2025-08-18
-
粉末增材制造技术在掺铒石英光纤激光器中的应用研究
在光纤通信、激光加工及生物医疗等关键领域,高性能光纤激光器的需求持续攀升,而增益光纤作为其核心构成部件,其制造工艺直接决定器件的性能水平。传统制造方法虽能生产高质量增益光纤,但存在生产周期冗长、成本高昂及成分调控灵活性不足等显著局限。近期,PawelManiewski等人在《Optica》期刊发表的研究成果,提出了一种基于粉末增材制造的新型制备方案,为高性能增益光纤的研发开辟了全新路径。
2025-08-18
-
偏心仪在透镜及镜片加工中的应用解析
偏心仪在透镜及镜片加工领域中应用广泛,其核心作用在于通过精密检测与校准,确保光学元件的几何中心与光轴保持高度一致性,进而保障光学系统的成像质量与性能稳定性。具体应用如下:
2025-08-15