【前沿资讯】超表面赋能量子全息术:当“光子记忆擦除”成为可视化现实
一、从EPR佯谬到量子擦除:跨越百年的量子探索
1935年,爱因斯坦等人提出的EPR佯谬掀开了量子纠缠的神秘面纱,而1991年Scully提出的量子擦除实验,则通过“选择性遗忘”光子路径信息,巧妙揭示了量子世界的波粒二象性。如今,香港科技大学与英国埃克塞特大学的联合团队,将这一抽象概念与超表面技术结合,首次实现了偏振-全息混合纠缠态的可视化操控,让“光子记忆擦除”以全息图像的形式直观呈现。相关成果发表于《AdvancedPhotonics》2025年第2期。
二、超表面:破解量子全息困境的“纳米魔术师”
在经典全息技术中,重建立体影像依赖固定光源与介质,而量子全息虽能通过纠缠光子对实现动态加密,却受限于传统光学元件对高维光场模态的操控能力。
超表面——一种具有亚波长纳米结构的平面光学器件——成为破局关键。研究团队利用其几何相位调控特性,为信号光子的左旋/右旋圆偏振态分别编码了两幅相位差π/2的全息图“HDVA”。通过改良的Gerchberg-Saxton算法,他们在石英基底上制备了700nm×105nm的纳米光栅阵列,相邻区域的π/2相位阶跃为后续量子干涉奠定了基础。
三、量子橡皮擦:从路径信息到全息内容的“选择性删除”
实验中,信号光子的全息图案与闲频光子的偏振态形成“薛定谔叠加态”:当闲频光子未被检测偏振时,信号光子呈现四字母叠加态;而插入特定偏振片后,对应字母因“路径信息暴露”发生相消干涉,如同被橡皮擦除。
可视化验证:如图2(c)所示,水平偏振检测下,“H”字母区域的干涉对比度降至-13.8dB(仅存4%原始亮度),而未擦除字母保持7.5dB清晰度,证实了对量子态的空间局域化精准操控。
核心机制:通过坍缩闲频光子的偏振自由度,诱导信号光子的两幅全息态产生干涉,实现对特定全息内容的“选择性擦除”,将量子擦除实验从抽象的条纹观测升级为具象的图像消隐。
四、从基础研究到应用:量子全息的多维潜力
1.量子通信加密:将全息图相位差作为四维量子密钥(误码率仅1.5%,远低于18%的安全阈值),攻击者即使截获光子,也因缺乏相位关联特性无法破译,为高鲁棒性量子通信提供新路径。
2.防伪技术革新:构建“经典振幅层+量子相位层”双重验证体系。仿冒者复制表面图案时,因缺失量子纠缠特性,在量子擦除检测中会暴露相位关联的“漏洞”,形成不可伪造的防伪标识。
3.基础物理探索:超表面搭建的混合纠缠态平台,为研究量子非定域性、高维量子态操控等基础问题提供了小型化、可编程的实验工具,推动量子光学器件向集成化发展。
五、未来展望:当纳米结构遇见量子世界
目前,团队正优化超表面材料与相位调控方案,以降低光子损耗并提升器件集成度。这项研究不仅突破了传统全息技术的静态局限,更首次将量子擦除与图像信息直接关联,为“看得见的量子现象”打开了新窗口。随着超表面技术与量子信息科学的深度融合,未来或许能实现动态加密全息投影、不可窃听的量子通信网络,甚至让量子叠加态以更直观的方式走进现实。
从EPR佯谬的哲学思辨到超表面上的纳米级操控,百年量子探索在微纳尺度上绽放新的光彩。当光子的“记忆”可以被精准擦除与重构,我们不仅触摸到了量子世界的神奇,更看到了其赋能未来科技的无限可能。
-
MIT突破光电芯片封装技术难题:引领下一代计算与通信产业变革
在全球数据流量呈指数级增长的背景下,如何实现光子芯片与电子芯片在单一封装内的高效集成,已成为制约下一代计算与通信技术规模化发展的核心议题。麻省理工学院(MIT)材料科学与工程系ThomasLord讲席教授、微光子学中心主任LionelKimerling指出:“在单一封装内达成光子学与电子学的集成,其战略意义堪比21世纪的‘晶体管’技术。若无法攻克这一核心挑战,该领域的大规模产业化进程将无从推进。”为应对此挑战,MIT新组建了由美国国家科学基金会资助的FUTUR-IC研究团队,项目负责人、MIT材料研究实验室首席研究科学家AnuAgarwal明确表示:“团队的核心目标是构建资源高效的微芯片产业价值链,为行业发展提供底层技术支撑。”
2025-08-29
-
超精密光学镜片的关键制备环节:精密光学镀膜技术的核心价值与应用分析
在超精密光学镜片的全生命周期制造流程中,材料筛选构建基础性能、精密加工保障几何精度、专业测试验证产品质量,而光学镀膜作为最终工序,堪称实现镜片性能跃升的“关键一跃”。该工序并非简单的表面覆盖处理,而是通过在原子尺度上精准调控膜层厚度、材料组成及微观结构,使加工完成的基片满足最终光学系统对超高透射率、超高反射率、特定分光比及极端环境稳定性等核心指标的要求。当前,超精密光学镀膜技术已形成多技术路径并行发展的格局,各技术体系在性能、成本及应用场景上各具特色,共同支撑航空航天、量子科技、高端制造等领域的技术突破。
2025-08-29
-
什么是水复合激光加工技术?高端制造领域热损伤难题的创新解决方案
水复合激光加工技术以水为核心辅助介质,通过“冷却-冲刷-导光”的多机制协同作用,构建了三类差异化技术体系,为精密制造领域提供了覆盖“经济实用”至“高精度高效能”的全场景技术方案,对推动高端制造业高质量发展具有重要意义。
2025-08-29
-
水导激光加工碳化硅高深径比微孔的技术研究与工艺优化
碳化硅作为一种具备高硬度、高耐磨性及优异热学、电学性能的先进材料,在航空航天、半导体器件、新能源装备等高端制造领域应用前景广阔。然而,其硬脆特性使得高深径比微孔(深径比≥10:1)加工面临严峻挑战,传统加工工艺如机械钻孔、电火花加工、超声加工等,普遍存在刀具磨损严重、加工精度低、表面质量差或加工效率不足等问题,难以满足高端领域对碳化硅微孔构件的严苛要求。在此背景下,水导激光加工技术融合激光高能量密度与水射流冷却排屑的双重优势,为突破碳化硅微孔加工瓶颈提供了创新技术路径,相关工艺参数的优化研究对推动该技术产业化应用具有重要意义。
2025-08-28