【前沿资讯】超表面赋能量子全息术:当“光子记忆擦除”成为可视化现实
一、从EPR佯谬到量子擦除:跨越百年的量子探索
1935年,爱因斯坦等人提出的EPR佯谬掀开了量子纠缠的神秘面纱,而1991年Scully提出的量子擦除实验,则通过“选择性遗忘”光子路径信息,巧妙揭示了量子世界的波粒二象性。如今,香港科技大学与英国埃克塞特大学的联合团队,将这一抽象概念与超表面技术结合,首次实现了偏振-全息混合纠缠态的可视化操控,让“光子记忆擦除”以全息图像的形式直观呈现。相关成果发表于《AdvancedPhotonics》2025年第2期。
二、超表面:破解量子全息困境的“纳米魔术师”
在经典全息技术中,重建立体影像依赖固定光源与介质,而量子全息虽能通过纠缠光子对实现动态加密,却受限于传统光学元件对高维光场模态的操控能力。
超表面——一种具有亚波长纳米结构的平面光学器件——成为破局关键。研究团队利用其几何相位调控特性,为信号光子的左旋/右旋圆偏振态分别编码了两幅相位差π/2的全息图“HDVA”。通过改良的Gerchberg-Saxton算法,他们在石英基底上制备了700nm×105nm的纳米光栅阵列,相邻区域的π/2相位阶跃为后续量子干涉奠定了基础。
三、量子橡皮擦:从路径信息到全息内容的“选择性删除”
实验中,信号光子的全息图案与闲频光子的偏振态形成“薛定谔叠加态”:当闲频光子未被检测偏振时,信号光子呈现四字母叠加态;而插入特定偏振片后,对应字母因“路径信息暴露”发生相消干涉,如同被橡皮擦除。
可视化验证:如图2(c)所示,水平偏振检测下,“H”字母区域的干涉对比度降至-13.8dB(仅存4%原始亮度),而未擦除字母保持7.5dB清晰度,证实了对量子态的空间局域化精准操控。
核心机制:通过坍缩闲频光子的偏振自由度,诱导信号光子的两幅全息态产生干涉,实现对特定全息内容的“选择性擦除”,将量子擦除实验从抽象的条纹观测升级为具象的图像消隐。
四、从基础研究到应用:量子全息的多维潜力
1.量子通信加密:将全息图相位差作为四维量子密钥(误码率仅1.5%,远低于18%的安全阈值),攻击者即使截获光子,也因缺乏相位关联特性无法破译,为高鲁棒性量子通信提供新路径。
2.防伪技术革新:构建“经典振幅层+量子相位层”双重验证体系。仿冒者复制表面图案时,因缺失量子纠缠特性,在量子擦除检测中会暴露相位关联的“漏洞”,形成不可伪造的防伪标识。
3.基础物理探索:超表面搭建的混合纠缠态平台,为研究量子非定域性、高维量子态操控等基础问题提供了小型化、可编程的实验工具,推动量子光学器件向集成化发展。
五、未来展望:当纳米结构遇见量子世界
目前,团队正优化超表面材料与相位调控方案,以降低光子损耗并提升器件集成度。这项研究不仅突破了传统全息技术的静态局限,更首次将量子擦除与图像信息直接关联,为“看得见的量子现象”打开了新窗口。随着超表面技术与量子信息科学的深度融合,未来或许能实现动态加密全息投影、不可窃听的量子通信网络,甚至让量子叠加态以更直观的方式走进现实。
从EPR佯谬的哲学思辨到超表面上的纳米级操控,百年量子探索在微纳尺度上绽放新的光彩。当光子的“记忆”可以被精准擦除与重构,我们不仅触摸到了量子世界的神奇,更看到了其赋能未来科技的无限可能。
-
离子阱量子比特的激光操控机制的原理、优势与关键技术
捕获离子技术作为量子计算领域的核心实现路径之一,通过电磁场囚禁离子、激光调控量子态,在相干性、操控精度与可扩展性方面展现出显著优势,已成为当前量子计算技术竞争的关键方向。该技术以线性保罗阱(PaulTrap)为核心装置,结合激光冷却与精准调控手段,实现对离子量子态的稳定编码、操控与读取,为构建高性能量子计算系统提供了重要技术支撑。本文将从技术原理、核心优势、关键装备等维度,系统解析离子阱量子比特的激光操控机制。
2025-10-14
-
高精度光学系统的“隐形干扰源”:应力双折射对技术突破的制约机制探析
在半导体制造领域的光刻机车间,工程师曾面临一项棘手难题:即便光学镜片的面型精度、表面光洁度均满足设计标准,光刻芯片的刻线边缘仍频繁出现模糊“毛边”,直接影响芯片良率;在天文观测领域,科研人员发现,排除大气扰动等外部因素后,望远镜捕捉的天体图像仍存在细微“重影”,难以达到衍射极限的观测精度。这些看似孤立的技术故障,均指向同一易被忽视的关键因素——应力双折射。
2025-10-14
-
塑料镜片注塑成型工艺:从原材料到成品的精密制造体系解析
在消费电子产业高速迭代的背景下,塑料镜片凭借轻量化、抗冲击性强、可批量成型等核心优势,已广泛应用于智能终端显示组件、多摄镜头模组及虚拟现实(VR)/增强现实(AR)光学系统,逐步替代传统玻璃镜片成为主流光学基材。然而,塑料镜片的高精度成型并非简单的“熔融注塑冷却”过程,而是围绕“材料特性、模具设计、工艺参数、后处理与检测”四大核心环节构建的精密制造体系。本文将从工业生产视角出发,系统拆解塑料镜片注塑成型的全流程技术逻辑,为行业从业者提供专业参考。
2025-10-13
-
光学材料选型避坑:一文分清光学玻璃与光学晶体
光学设备研发、镜头设计或激光系统搭建中,不少人常把光学玻璃和光学晶体混为一谈——明明想选低成本的普通镜头材料,却误看了高价的晶体;或是需要深紫外透射功能时,还在纠结玻璃的参数,最终导致项目延期或性能不达标。其实这两种材料并非“近亲”,而是基于微观结构划分的独立类别,搞懂它们的核心差异,才能精准选型。
2025-10-13