【光学前沿】突破水吸收波段限制,空芯光子晶体光纤实现中红外超短脉冲高效传输
中红外光凭借其独特的光谱特性,在先进光谱学、材料加工、生物医学诊断及遥感等领域具有不可替代的应用价值。长期以来,中红外光的高质量传输受限于材料吸收、衍射及非线性效应等多重因素。近日,中国科研团队在《Optica》期刊发表的最新研究中,通过真空空芯光子晶体光纤技术,成功实现了水吸收波段内宽带100飞秒中红外脉冲的灵活传输,为解决这一技术难题提供了突破性方案。
中红外传输的技术瓶颈与创新路径
传统中红外光传输方式存在显著局限性:在自由空间传输中,空气中的分子(尤其是水蒸气)在中红外波段存在大量吸收线,导致功率损耗及光束时空轮廓畸变;实芯光纤因高峰值功率引发的非线性效应,导致脉冲光谱及时间特性严重失真。尽管真空设备可规避上述问题,但系统复杂性高,不利于实际应用。
针对这一困境,中国科学院上海光学精密机械研究所等机构的研究团队创新性地采用真空空芯光子晶体光纤(PCF)技术。该光纤以二氧化硅为材料,通过堆叠拉伸法制造,核心为空芯结构,周围环绕毛细管阵列。与传统实芯光纤相比,其具备更高的光学损伤阈值和机械强度,且能有效减少材料与光的相互作用,从根源上抑制非线性效应。
光纤设计与关键性能参数
研究中所用空芯光子晶体光纤展现出卓越的传输特性:空芯直径约103μm,周围环绕8根内径40μm的毛细管,壁厚仅805nm。在2.53.5μm波段形成低损耗传输窗口,2.8μm处损耗低至0.062±0.005dB/m,整个24μm范围内损耗均控制在0.16dB/m以下。
值得注意的是,该光纤具备优异的弯曲性能:当弯曲直径大于40cm时,在2.63.1μm工作波段内几乎无弯曲损耗,为灵活部署提供了关键支撑。通过抽真空至10mbar,可彻底消除水蒸气吸收带来的干扰,确保传输稳定性。
实验验证:高效保真的脉冲传输
实验采用中心波长2.8μm、脉冲宽度120飞秒、平均功率1.1W的中红外激光源,通过优化耦合系统(耦合效率约86%)注入5米长真空空芯光子晶体光纤。实验结果表明:
传输效率:抽真空后传输效率稳定在70%以上,输入功率为1.1W时,输出功率达779.8mW,且输出功率与输入功率呈线性关系,无明显饱和现象。
脉冲保真度:经色散补偿(采用30mmZnSe与5mmGe窗口)后,输出脉冲宽度压缩至98飞秒,接近变换极限,光谱轮廓与输入保持高度一致,仅存在微小干涉条纹。
稳定性:1小时监测中,功率波动系数仅0.47%,光谱稳定性优异;光束指向稳定性达5.306.96μrad,优于输入激光的9.6914.33μrad,这得益于光纤的波导特性及热稳定性提升。
对比优势与应用前景
与现有传输方式相比,真空空芯光子晶体光纤的优势显著体现在以下方面:
相较于自由空间传输(5米传输效率为50%,光谱畸变严重),其在水吸收波段(2.72.9μm)实现了近乎无畸变传输;
对比充气光纤(传输效率为45%),抽真空操作使效率提升近30%;
避免了实芯光纤因非线性效应导致的光谱分裂及脉冲分裂现象。
该技术的突破为中红外光的实际应用开辟了新路径。在光谱学领域,高保真传输确保了物质特征峰的精准探测;在生物医学领域,灵活的光纤传输可简化手术器械设计;在遥感应用中,稳定的光束指向性提升了远距离探测精度。未来通过优化光纤设计抑制高阶模(当前约4%能量进入LP11模)、改进耦合系统,有望将功率提升至数十瓦级,并支持更长距离传输。
该研究不仅展示了空芯光子晶体光纤在中红外传输中的巨大潜力,更为宽带中红外超快光源在前沿科技领域的应用奠定了坚实基础,推动中红外技术从实验室走向实际应用场景。
-
离子阱量子比特的激光操控机制的原理、优势与关键技术
捕获离子技术作为量子计算领域的核心实现路径之一,通过电磁场囚禁离子、激光调控量子态,在相干性、操控精度与可扩展性方面展现出显著优势,已成为当前量子计算技术竞争的关键方向。该技术以线性保罗阱(PaulTrap)为核心装置,结合激光冷却与精准调控手段,实现对离子量子态的稳定编码、操控与读取,为构建高性能量子计算系统提供了重要技术支撑。本文将从技术原理、核心优势、关键装备等维度,系统解析离子阱量子比特的激光操控机制。
2025-10-14
-
高精度光学系统的“隐形干扰源”:应力双折射对技术突破的制约机制探析
在半导体制造领域的光刻机车间,工程师曾面临一项棘手难题:即便光学镜片的面型精度、表面光洁度均满足设计标准,光刻芯片的刻线边缘仍频繁出现模糊“毛边”,直接影响芯片良率;在天文观测领域,科研人员发现,排除大气扰动等外部因素后,望远镜捕捉的天体图像仍存在细微“重影”,难以达到衍射极限的观测精度。这些看似孤立的技术故障,均指向同一易被忽视的关键因素——应力双折射。
2025-10-14
-
塑料镜片注塑成型工艺:从原材料到成品的精密制造体系解析
在消费电子产业高速迭代的背景下,塑料镜片凭借轻量化、抗冲击性强、可批量成型等核心优势,已广泛应用于智能终端显示组件、多摄镜头模组及虚拟现实(VR)/增强现实(AR)光学系统,逐步替代传统玻璃镜片成为主流光学基材。然而,塑料镜片的高精度成型并非简单的“熔融注塑冷却”过程,而是围绕“材料特性、模具设计、工艺参数、后处理与检测”四大核心环节构建的精密制造体系。本文将从工业生产视角出发,系统拆解塑料镜片注塑成型的全流程技术逻辑,为行业从业者提供专业参考。
2025-10-13
-
光学材料选型避坑:一文分清光学玻璃与光学晶体
光学设备研发、镜头设计或激光系统搭建中,不少人常把光学玻璃和光学晶体混为一谈——明明想选低成本的普通镜头材料,却误看了高价的晶体;或是需要深紫外透射功能时,还在纠结玻璃的参数,最终导致项目延期或性能不达标。其实这两种材料并非“近亲”,而是基于微观结构划分的独立类别,搞懂它们的核心差异,才能精准选型。
2025-10-13