香港中文大学和中国科学院物理研究所开发超速激光神经元,开启人工智能新纪元
香港,2025年1月3日—在人工智能和先进计算领域,提升计算速度和效率一直是科研人员追求的目标。近日,香港中文大学和中国科学院物理研究所的研究人员宣布,他们成功开发了一种基于激光的人工神经元,这种神经元不仅能够完全模拟生物分级神经元的功能,而且在信号处理速度上达到了惊人的10GBaud,比生物神经元快十亿倍。

一、技术突破:模拟生物神经元,速度提升十亿倍
这种新型激光分级神经元的开发,标志着在模仿生物神经元的动态响应和信息处理方面取得了重大突破。传统的光子脉冲神经元由于其工作原理,存在速度限制,而新型激光神经元通过电注入量子点激光器,成功克服了这一限制。研究人员通过将射频信号注入量子点激光器的可饱和吸收区,避免了传统方法中的延迟问题,实现了更快、更简单、更节能的系统。
二、实际应用:模式识别和序列预测能力显著提升
在实际应用中,这种激光神经元展现了其卓越的性能。研究人员在实验中展示了其在一秒钟内处理1亿次心跳数据和3470万张手写数字图像的能力。此外,激光神经元在心律失常检测和手写数字分类等任务中表现出色,准确率分别达到了98.4%和92.3%。这些成果不仅展示了激光神经元在模式识别和序列预测能力上的显著提升,也为人工智能领域带来了新的可能。
三、未来展望:集成到边缘计算设备,促进更快、更智能的AI系统
黄超然教授表示,这项技术可以在不牺牲准确性的情况下提高时间关键型应用中的人工智能决策速度。她的团队计划将激光神经元集成到边缘计算设备中,以促进更快、更智能的人工智能系统,同时降低能耗。随着多个激光神经元的级联,预计计算能力将得到更大的提升,为人工智能的未来开辟新的道路。
这项突破性的研究发表在Optica杂志上,不仅为光通讯系统提供了智能、节能且高速的信号处理方式,也为新一代光通讯系统的发展提供了强有力的支持。
-
红外与拉曼:光如何"看懂"分子的振动密码?
在分子光谱学的世界里,存在一个奇特的现象:有些分子振动在红外光谱中清晰可见,在拉曼光谱中却踪迹全无;另一些振动则恰好相反。这并非偶然,而是源于光与分子相互作用的两种不同方式——红外吸收依赖分子振动时的偶极矩变化,拉曼散射则依赖极化率变化。这个结论不是经验总结,而是经典电磁理论、量子力学与无数实验共同验证的科学真相。
2025-12-26
-
量子启发计算波前整形:抗湍流光学成像的突破性进展
光学成像技术在遥感探测、天文观测、生物医学成像等关键领域发挥着不可替代的作用,但大气湍流、生物组织等无序介质引发的光波前随机畸变,长期制约着成像质量与分辨率的提升。传统波前校正方法依赖空间光调制器等硬件进行定域调控,存在硬件要求高、动态环境响应延迟及稳定性不足等局限。国防科技大学与香港理工大学联合团队提出一种量子启发的计算波前整形技术,基于经典关联光源与单像素探测原理,实现了抗湍流的分布式孔径合成成像。该技术摆脱了对专用硬件及子孔径共相操作的依赖,在湍流环境下达成0.157毫米的衍射极限分辨率,相关研究成果以“量子启发计算波前整形实现抗湍流分布式孔径合成成像(Quantum-Inspired Computational Wavefront Shaping Enables Turbulence-Resilient Distributed Aperture Synthesis Imaging)”为题发表于《Science Advances》,为动态复杂环境下的高分辨率光学成像提供了全新解决方案。
2025-12-26
-
几何光波导的平行度难题,如何突破量产检测瓶颈?
在AR近眼显示技术飞速发展的今天,几何光波导凭借无色散、成像质量高、结构直观的优势,成为商业化AR眼镜的核心方案,其中基于部分反射镜阵列(PRMA)的设计更是占据主流地位。然而,一个看似细微的“制造细节”——平行度误差,却成为制约其成像效果与规模化量产的关键瓶颈。理想状态下,波导上下基底需严格平行,PRMA中各反射镜也需保持方向一致,但微小的角度偏差就会被指数级放大,最终形成影响视觉体验的“鬼像”,而工程上允许的误差精度已苛刻到基底±6arcsec、相邻PRMA镜面±9arcsec。
2025-12-26
-
电子自准直仪三角摆动测量技术解析,重塑精密制造精度基准!
旋转部件(如精密轴承、机床主轴、光学轴系)的摆动误差直接决定了在精密机械制造、高端装备校准、光学工程检测等核心领域设备运行精度与产品质量稳定性。传统接触式测量易造成部件磨损、动态响应滞后,而常规光学测量方案存在精度不足、环境适应性差等局限,难以满足现代精密制造对微米级、亚角秒级摆动检测的严苛需求。德国TRIOPTICS研发的TriAngle®电子自准直仪,依托成熟的三角摆动测量技术,以非接触式测量为核心,构建起“高精度、高稳定、全场景”的测量解决方案,成为精密制造领域不可或缺的精度检测核心设备。
2025-12-26
