香港中文大学和中国科学院物理研究所开发超速激光神经元,开启人工智能新纪元
香港,2025年1月3日—在人工智能和先进计算领域,提升计算速度和效率一直是科研人员追求的目标。近日,香港中文大学和中国科学院物理研究所的研究人员宣布,他们成功开发了一种基于激光的人工神经元,这种神经元不仅能够完全模拟生物分级神经元的功能,而且在信号处理速度上达到了惊人的10GBaud,比生物神经元快十亿倍。
一、技术突破:模拟生物神经元,速度提升十亿倍
这种新型激光分级神经元的开发,标志着在模仿生物神经元的动态响应和信息处理方面取得了重大突破。传统的光子脉冲神经元由于其工作原理,存在速度限制,而新型激光神经元通过电注入量子点激光器,成功克服了这一限制。研究人员通过将射频信号注入量子点激光器的可饱和吸收区,避免了传统方法中的延迟问题,实现了更快、更简单、更节能的系统。
二、实际应用:模式识别和序列预测能力显著提升
在实际应用中,这种激光神经元展现了其卓越的性能。研究人员在实验中展示了其在一秒钟内处理1亿次心跳数据和3470万张手写数字图像的能力。此外,激光神经元在心律失常检测和手写数字分类等任务中表现出色,准确率分别达到了98.4%和92.3%。这些成果不仅展示了激光神经元在模式识别和序列预测能力上的显著提升,也为人工智能领域带来了新的可能。
三、未来展望:集成到边缘计算设备,促进更快、更智能的AI系统
黄超然教授表示,这项技术可以在不牺牲准确性的情况下提高时间关键型应用中的人工智能决策速度。她的团队计划将激光神经元集成到边缘计算设备中,以促进更快、更智能的人工智能系统,同时降低能耗。随着多个激光神经元的级联,预计计算能力将得到更大的提升,为人工智能的未来开辟新的道路。
这项突破性的研究发表在Optica杂志上,不仅为光通讯系统提供了智能、节能且高速的信号处理方式,也为新一代光通讯系统的发展提供了强有力的支持。
-
超精密光学镜片制造工艺解析:从基材处理到原子级加工的技术体系
超精密光学镜片作为现代高端装备的核心光学元件,广泛应用于天文观测、微观探测、半导体制造等关键领域,其光学性能直接决定了相关设备的功能精度与技术极限。这类镜片的制造并非传统意义上的机械加工,而是融合材料科学、精密控制与检测技术的系统性工程。在满足光学基材各项性能指标的基础上,需通过多阶段、多技术协同的加工流程,实现对材料表面的原子级精度调控。本文将系统梳理超精密光学镜片的制造技术体系,剖析传统与新兴加工技术的原理、特性及应用场景,并阐述各技术在加工闭环中的协同作用。
2025-08-27
-
激光晶体:激光技术发展的核心支撑介质
在现代科技体系中,激光技术已成为推动工业制造、医疗健康、科学研究及国防安全等领域革新的关键力量。激光晶体作为激光发生器的核心功能介质,其物理化学特性直接决定激光输出的波长、功率、效率及光束质量,是保障激光技术性能与应用拓展的基础。当前,激光晶体主要分为离子掺杂型、非线性光学型及特殊功能型三大类别,各类晶体基于独特的结构与性能,在不同应用场景中发挥不可替代的作用
2025-08-27
-
光子学技术在心血管疾病诊疗领域的创新应用与发展展望
心血管疾病(CardiovascularDisease,CVD)作为全球首要致死病因,每年导致约2000万人死亡,其疾病谱涵盖冠状动脉疾病、心肌梗死、脑卒中、心律失常及心力衰竭等多种病症,对全球公共卫生体系构成严峻挑战。长期以来,计算机断层扫描(ComputedTomography,CT)、血管造影术等传统光子学技术虽为CVD的诊断与治疗提供了重要支撑,但受限于侵入性较强、功能信息获取有限、实时监测能力不足等固有短板,难以满足临床对精准化、无创化诊疗的需求。近年来,以光声成像、光学可穿戴传感、光动力疗法为代表的新兴光子学技术快速发展,通过融合光学原理与医学诊疗需求,在提升CVD诊断精度、优化治疗方案、拓展监测场景等方面展现出显著优势,正逐步推动心血管医学向更高效、更精准、更可及的方向变革。
2025-08-27
-
光纤激光器的核心原理与主流腔型技术分析
在现代激光技术体系中,光纤激光器凭借高功率输出、优异光束质量及稳定运行特性,已在工业制造、光纤通信、医疗诊断等关键领域实现广泛应用。其技术优势的形成,源于以稀土掺杂光纤为核心的增益介质设计及多元化谐振腔结构的创新。本文基于光纤激光器的工作机制,系统阐述其核心原理,并对四类主流谐振腔的技术特征与应用场景展开深入分析。
2025-08-26