什么是光纤端面相移干涉术?一种精确获取三维表面数据的技术
在光学领域,熟练的操作员能够通过观察迈克尔逊干涉仪产生的条纹来了解连接器端部的三维形状。而相移干涉术作为一种获得定量三维表面数据的精确技术,正发挥着重要作用。

相移干涉术具有诸多显著优势。首先,它能够提供高度精确的三维表面数据。通过安装在压电致动器上的参考镜来改变相位差,并拍摄一系列不同相位量的图像,再结合特定算法进行处理,这种方式可以实现对表面相位图的精确获取,进而转换为定量的三维信息,其精度远超传统的观测方法。
其次,该技术具有良好的稳定性和可重复性。由于采用了标准化的操作流程和算法,使得每次测量的结果都具有较高的一致性,为科学研究和实际应用提供了可靠的数据支持。再者,相移干涉术的适用范围广泛,可以应用于各种不同类型的光纤端面以及其他光学元件的表面测量。
历史资料中对于光纤端面的3D指标有详细介绍。相移干涉术与光纤端面干涉仪的结合,为精确测量光纤端面的形状提供了有力的手段。这种技术不仅在光学研究中具有重要意义,也在光纤通信等实际应用领域有着广泛的应用前景。
通过相移干涉术,我们能够更加深入地了解光纤端面的微观结构,为提升光纤系统的性能和可靠性提供技术支持。
-
半导体抛光设备自动化应用及工艺质量管控要点探析
在半导体器件规模化量产进程中,抛光工艺作为保障晶圆加工精度与表面质量的核心环节,其设备自动化水平、工艺参数调控能力、检测体系完善度及异常处置效率,直接决定生产效率、工艺稳定性与产品良率。本文从抛光设备自动化配置要求、核心工艺参数调控、关键检测指标界定及常见工艺异常处理四个维度,系统阐述半导体抛光工艺的质量管控核心要点,为半导体抛光制程的标准化、精细化实施提供参考。
2026-02-12
-
硅晶圆激光切割核心技术深度解析:原理、工艺与质量把控
在半导体制造产业链中,硅晶圆切割是芯片成型的关键工序,其加工精度与效率直接影响芯片良品率和产业发展节奏。随着微电子器件向微型化、薄型化升级,传统切割方式的弊端逐渐显现,激光切割凭借高精度、低损伤的技术优势成为行业主流。本文从激光切割系统的硬件构成出发,深入拆解隐形切割与消融切割两大核心工艺,解析光斑、焦点的精度控制逻辑,并探讨切割质量的评价维度与效率平衡策略,系统梳理硅晶圆激光切割的核心技术体系
2026-02-12
-
无掩模激光直写技术研究概述
无掩模激光直写技术作为微纳加工领域的先进光刻技术,摒弃了传统光刻工艺对掩模版的依赖,凭借直接写入的核心特性,在复杂微纳结构制备、高精度图案加工中展现出独特优势,成为微纳加工领域的重要技术方向。本文从工作原理与流程、技术特性、现存挑战、分辨率与对准参数、核心设备及厂务动力配套要求等方面,对该技术进行全面梳理与阐述。
2026-02-12
-
SiC功率器件的高温时代:封装成为行业发展核心瓶颈
在半导体功率器件技术迭代进程中,碳化硅(SiC)凭借高温工作、高电流密度、高频开关的核心优势,成为推动功率半导体升级的关键方向,其普及大幅提升了器件的功率密度与工作效率,为功率半导体行业发展带来全新机遇。但与此同时,行业发展的核心瓶颈正悄然从芯片设计与制造环节,转移至封装层面。当SiC将功率器件的工作温度与功率密度不断推高,芯片本身已具备承受更高应力的能力,而封装环节的材料适配、热路径设计等问题却日益凸显,高温与快速功率循环叠加的工况下,焊料与热路径成为决定SiC功率模块寿命的核心因素,封装技术的发展水平,正成为制约SiC功率器件产业化落地与长期可靠应用的关键。
2026-02-12
