点衍射干涉仪的原理与发展
点衍射干涉仪作为一种重要的光学检测工具,具有独特的原理和发展历程。
点衍射干涉仪最早由Linnik于1933年提出,1975年由Smart和Steel完成具体实施。其中,针孔点衍射干涉仪的工作原理是,聚焦透镜将入射待测波前聚焦到加工有极小针孔的点衍射板上,形成点像弥散斑,待测波前透过点衍射板形成检测波前,检测波前与参考波前在点衍射板后方发生干涉产生干涉条纹,通过这些干涉条纹对待测波前进行检测。

针孔点衍射干涉仪具有一些显著特点。当针孔直径在波长量级时,远场衍射波前相对于理想球面波的偏离量小于万分之一波长。针孔可以是透明的,也可以是不透明的,产生的球面波阵面质量取决于遮蔽或针孔的几何质量。不过,衍射形成的参考光光强弱,点衍射板透过率通常多在1%左右。
点衍射干涉仪是结构简单的共路干涉仪,具有良好的抗震性,受大气扰动、机械振动的影响较小,并且对光源无特殊要求,可使用普通白光光源。
在其发展过程中,还出现了具有点衍射功能的马赫曾德干涉仪,这种干涉仪的排列方式多样,可以在马赫-曾德尔干涉仪的参考臂中通过针孔进行额外滤波。该装置能够作为波前测试仪,测试样品放置在干涉仪前方。
此外,还有光纤点衍射干涉仪,单模光纤末端可用于产生近乎完美的球面波阵面。例如在G.Sommargren的PDI中,光纤末端涂有半透明金属膜,通过反射光的叠加可在CCD相机上显示干涉图,在某些布置中甚至可避免使用目镜。
-
镜头色差成因及校正技术解析:ED镜片与APO复消色差系统
在光学成像领域,色差是影响镜头成像质量的核心问题之一。尤其是在长焦拍摄、广角边缘成像或逆光、大光比等复杂场景下,画面中出现的紫边、绿边等色边现象,以及颜色浸润、边缘模糊等问题,本质上均为色差(ChromaticAberration,简称CA)导致的成像偏差。本文将系统解析色差的物理本质、产生机制,深入探讨普通镜片组合、ED镜片及APO复消色差三种校正方案的技术原理与优劣特性,并澄清行业内关于APO镜头与锐度的认知误区。
2025-12-15
-
无干涉机制赋能宽带片上角动量复用:150纳米带宽芯片技术实现
在信息技术向超高容量、微型化方向持续演进的当下,光的角动量复用技术凭借其物理正交特性,已成为破解数据传输与存储领域性能瓶颈的关键技术路径。然而,传统基于干涉法的探测方案受限于器件体积与带宽特性,难以满足芯片级集成应用的核心需求。近日,一项发表于《Science》的研究提出了无干涉角动量复用创新方案,通过设计新型纳米环孔径结构,成功实现150纳米带宽的片上并行复用,为微型化纳米光子器件的研发与应用开辟了全新路径。
2025-12-15
-
多组间隔镜片镜头的定心装配与空气间隔控制技术
在精密光学镜头(如安防监控镜头、工业检测镜头、高端成像镜头等)中,多组带空气间隔的镜片是实现高清成像的核心结构。镜片光轴的同轴度与空气间隔的精准度直接决定镜头的分辨率、像差校正效果等关键指标——若光轴偏移,会导致成像模糊、畸变;若空气间隔偏离设计值,则会破坏光学系统的共轭关系,影响画质还原。针对这类镜头,数控定心车削技术结合闭环反馈装配体系,已成为实现高精度定心装配与空气间隔控制的主流方案。
2025-12-15
-
放大的自发辐射(ASE)与受激辐射的核心机制及差异解析
在量子电子学与激光物理领域,光辐射机制的特性直接决定了光学器件的性能与应用场景。放大的自发辐射(Amplified Spontaneous Emission,ASE)作为介于自发辐射与受激辐射之间的关键光放大过程,其物理本质与两类基础辐射机制的差异,是理解光电子技术原理的核心前提。本文基于量子光学基本理论,系统梳理三者的物理机制、形成过程及核心差异,为相关领域的理论研究与技术应用提供参考。
2025-12-15
