深入了解迈克尔逊干涉仪在光纤端面测量中的应用
在当今的科技领域,光纤技术的发展日新月异,而在光纤端面的测量中,迈克尔逊干涉仪发挥着至关重要的作用。
市面上常见的光纤端面干涉仪多采用Michelson式或Mirau式,这一选择实则是由光纤自身的参数所决定的。由于其他形式的干涉仪横向分辨率过低,无法满足测量需求,唯有这两种能够胜任。
迈克尔逊干涉仪的工作原理基于光的干涉现象。通过分束器将照明光分成两束,当这两束光在重叠部分的传播距离为光波长的整数倍时,就会发生相长干涉;而当传播距离是光波长一半的奇数倍时,则会发生相消干涉,从而形成干涉条纹。
通过图像我们可以清晰地看到,在平面参考镜和球形连接器端面之间会出现条纹。其中,中心的黑色圆圈是直径为125微米的光纤,因其反射率低于陶瓷,导致光亮度不足而呈现黑色。
值得注意的是,随着待测产品的不断发展,越来越多的是多芯产品。在这种情况下,Mirau式干涉仪已无法满足测量需求,此时只能采用Michelson式干涉仪。这一选择的背后,也参考了之前博文中关于芯片测量用的几种干涉仪原理光路和特点的相关内容。
总之,迈克尔逊干涉仪在光纤端面测量领域的应用,为光纤技术的不断进步和发展提供了有力的支持和保障。
-
低密度等离子体棱镜压缩器取得突破,突破传统光学限制,赋能超高功率激光技术
激光技术的迅猛发展,持续推动着人类对极端物理现象的探索,而拍瓦级及更高功率的激光装置,更是解开高能物理、相对论光学等领域奥秘的关键工具。然而,传统激光脉冲压缩技术长期受限于光学元件的损伤阈值,成为制约激光功率提升的核心瓶颈。近日,美国密歇根大学、罗切斯特大学等机构的科研人员联合研发出基于低密度等离子体棱镜的新型脉冲压缩器,为突破这一限制带来革命性进展,相关成果发表于《HighPower Laser Scienceand Engineering》。
2025-08-18
-
从光斑到清晰成像,光学系统如何突破"模糊"极限?
当我们透过镜头观察世界时,那些清晰的图像背后,藏着光的衍射与数学模型的复杂博弈。为何遥远的恒星在望远镜中会变成光斑?光学系统如何传递图像的细节?从艾里斑到调制传递函数,这些关键概念正是解开"模糊"谜题的钥匙。
2025-08-18
-
粉末增材制造技术在掺铒石英光纤激光器中的应用研究
在光纤通信、激光加工及生物医疗等关键领域,高性能光纤激光器的需求持续攀升,而增益光纤作为其核心构成部件,其制造工艺直接决定器件的性能水平。传统制造方法虽能生产高质量增益光纤,但存在生产周期冗长、成本高昂及成分调控灵活性不足等显著局限。近期,PawelManiewski等人在《Optica》期刊发表的研究成果,提出了一种基于粉末增材制造的新型制备方案,为高性能增益光纤的研发开辟了全新路径。
2025-08-18
-
偏心仪在透镜及镜片加工中的应用解析
偏心仪在透镜及镜片加工领域中应用广泛,其核心作用在于通过精密检测与校准,确保光学元件的几何中心与光轴保持高度一致性,进而保障光学系统的成像质量与性能稳定性。具体应用如下:
2025-08-15