【光学前沿资讯】高效集成双微梳光源的研究突破
一、引言
在当今科技飞速发展的时代,双频梳干涉技术展现出巨大的应用潜力。然而,现有的双频梳系统在实际应用中面临诸多挑战,集成和设备小型化成为亟待解决的关键问题。
二、光学双微梳源混合集成平台
这种混合集成双微梳源由多个关键部分组成。它包括热稳定且具有高Q微谐振器的SiN光子芯片,对接耦合的半导体LD以及输出透镜光纤。通过使用不同的光子芯片设计和半导体,能够实现快速原型制作。不过,由于两个光子芯片需要独立热稳定,导致拍频的相对热漂移高达100MHz。
三、用于双微梳源的高效孤子微梳
当前,制造高Q氮化硅微谐振腔的技术存在一定局限,使用单频窄线宽激光器的外部泵浦来产生可持续的孤子微梳并非易事,且外部泵激发孤子梳的过程较为复杂。而完全集成的自注入锁定方案带来了出色的交钥匙操作,无需额外设备,不仅抑制了热效应,还保持了梳产生状态的稳定,极大地简化了梳生成过程,提高了稳定性。生成的梳具有宽带、高信噪比和高泵-梳边带功率转换效率等显著优点。
四、双微梳源的光谱特性
通过调节微谐振腔温度,可以有效地控制微梳线间距和双微梳信号。自注入锁定放宽了对微谐振器Q因子及其光谱纯度的要求,使得商业微谐振器能够应用于片上双微梳源。在半导体激光设备二极管的选择上,分布式反馈激光二极管在锁定波长可预测、两梳匹配等方面表现出色,而法布里-珀罗型则更具功率优势且价格便宜,具有实际应用前景。为了克服热漂移,提高双梳稳定性,可以考虑将两个微谐振器组合在同一个光子芯片上或使用相同微谐振器产生两个孤子梳等设计。基于自注入锁定的微梳生成设计方案有望进一步提升集成双微梳源的性能。
五、研究人员简介
相关研究人员来自特定的机构,专注于该领域的深入研究,他们的研究方向和联系方式为进一步的交流与合作提供了可能。
-
MIT突破光电芯片封装技术难题:引领下一代计算与通信产业变革
在全球数据流量呈指数级增长的背景下,如何实现光子芯片与电子芯片在单一封装内的高效集成,已成为制约下一代计算与通信技术规模化发展的核心议题。麻省理工学院(MIT)材料科学与工程系ThomasLord讲席教授、微光子学中心主任LionelKimerling指出:“在单一封装内达成光子学与电子学的集成,其战略意义堪比21世纪的‘晶体管’技术。若无法攻克这一核心挑战,该领域的大规模产业化进程将无从推进。”为应对此挑战,MIT新组建了由美国国家科学基金会资助的FUTUR-IC研究团队,项目负责人、MIT材料研究实验室首席研究科学家AnuAgarwal明确表示:“团队的核心目标是构建资源高效的微芯片产业价值链,为行业发展提供底层技术支撑。”
2025-08-29
-
超精密光学镜片的关键制备环节:精密光学镀膜技术的核心价值与应用分析
在超精密光学镜片的全生命周期制造流程中,材料筛选构建基础性能、精密加工保障几何精度、专业测试验证产品质量,而光学镀膜作为最终工序,堪称实现镜片性能跃升的“关键一跃”。该工序并非简单的表面覆盖处理,而是通过在原子尺度上精准调控膜层厚度、材料组成及微观结构,使加工完成的基片满足最终光学系统对超高透射率、超高反射率、特定分光比及极端环境稳定性等核心指标的要求。当前,超精密光学镀膜技术已形成多技术路径并行发展的格局,各技术体系在性能、成本及应用场景上各具特色,共同支撑航空航天、量子科技、高端制造等领域的技术突破。
2025-08-29
-
什么是水复合激光加工技术?高端制造领域热损伤难题的创新解决方案
水复合激光加工技术以水为核心辅助介质,通过“冷却-冲刷-导光”的多机制协同作用,构建了三类差异化技术体系,为精密制造领域提供了覆盖“经济实用”至“高精度高效能”的全场景技术方案,对推动高端制造业高质量发展具有重要意义。
2025-08-29
-
水导激光加工碳化硅高深径比微孔的技术研究与工艺优化
碳化硅作为一种具备高硬度、高耐磨性及优异热学、电学性能的先进材料,在航空航天、半导体器件、新能源装备等高端制造领域应用前景广阔。然而,其硬脆特性使得高深径比微孔(深径比≥10:1)加工面临严峻挑战,传统加工工艺如机械钻孔、电火花加工、超声加工等,普遍存在刀具磨损严重、加工精度低、表面质量差或加工效率不足等问题,难以满足高端领域对碳化硅微孔构件的严苛要求。在此背景下,水导激光加工技术融合激光高能量密度与水射流冷却排屑的双重优势,为突破碳化硅微孔加工瓶颈提供了创新技术路径,相关工艺参数的优化研究对推动该技术产业化应用具有重要意义。
2025-08-28