什么是液体透镜?液体透镜有什么应用?
液体透镜,作为一种基于仿生学概念的新型光学元件,以其体积小、集成度高及自主变焦能力强的特点,正逐渐成为医用内窥镜光学系统设计的新焦点。本文旨在探讨如何将液体透镜技术应用于医用内窥镜,以实现在不增加系统复杂性的前提下,提升内窥镜的变焦功能。
1.液体透镜的种类及原理
液体透镜,这一仿生学光学元件,模仿人眼的调节机制,通过睫状肌的收缩与松弛调节晶状体曲率,实现变焦。液体透镜无需移动组件,具有变焦平滑、体积小、重量轻、成本低廉及加工简易等特点,适用于新型传感器及系统,用以调节像质和提高放大率,展现出广阔的应用前景。
液体透镜的实现方法主要包括:基于液体折射率变化的可变焦透镜、基于填充液体表面曲率变化的可变焦透镜和基于介质上电润湿流体接触角变化的可变焦透镜。本文主要采用了一种自行设计的可由气压或液压驱动的基于填充液体表面曲率变化的可变焦透镜。

基于填充液体表面曲率变化的可变焦透镜,通过压控方式对腔体内液体加压,改变腔体表面透明可变形薄膜的曲率半径,从而调整透镜焦距。此方法制造简便,透镜口径大小灵活,且可通过选择高折射率液体实现大范围变焦。
2.折衍混合型液体透镜
在确定所需光焦度后,液体透镜的可调节表面曲率半径即被确定,这限制了其在单片透镜上进行像差优化的能力。为解决此问题,本文提出了一种折衍混合型液体透镜,将普通液体透镜的平面玻璃基底设计为衍射光学设备。

通过将衍射光学面作为液体透镜的结构组成部分,不仅保持了透镜的重量、尺寸及结构稳定性,还为其提供了像差校正的设计自由度,使单片液体透镜的像质优化成为可能,从而提高了成像质量,拓宽了应用范围。
3.结论
当前医用内窥镜技术在局部放大观察病灶方面存在局限,用户期望在物距不变的情况下实现局部图像放大及宽景深范围内的清晰成像。传统光学设计中,变焦往往伴随着系统结构的复杂化和体积的增大,这对于医用内窥镜而言是不可接受的。本文基于高斯光学计算,提出了一种利用液体可变焦透镜实现无运动组件变焦距系统的设计思路,并设计了一种二元变焦系统,有效提升了内窥镜的成像能力,同时保持了系统的微型结构。这一设计为微型变焦距系统的设计提供了新的思路,具有广泛的应用前景。
液体可变焦透镜以其体积小、重量轻、变焦平滑、集成度高及易于控制等优点,在系统体积受限且需变焦能力的场合展现出显著优势,广泛应用于信息技术、工业生产、医疗卫生及军事国防等领域。尽管如此,液体透镜技术在变焦控制能力及系统封装方面仍有待进一步提高。
-
中心偏差会影响近红外成像吗?高精密应用中的关键考量
近红外(NIR,NearInfrared,通常指700–1100nm)成像技术广泛应用于安防监控、车载辅助、生物医疗等领域。尽管近红外波段的光学特性与可见光存在差异,中心偏差对其成像质量的影响仍不容忽视——尤其在高分辨率、大孔径或精密测量等严苛应用场景中,这种影响可能直接导致系统性能失效。本文将从影响机制、敏感度分析、实际案例及解决方案等维度,系统解析中心偏差与近红外成像的关联。
2026-01-04
-
一文了解单透镜中心偏差,如何精准测量与控制光学系统的关键误差?
单透镜的中心偏差(又称偏心或定心仪偏差)是影响成像质量的核心误差源之一。这种偏差表现为透镜前后两个光学表面的光轴不重合,导致几何中心与光学中心产生偏移,进而引入彗差、像散等像差,严重制约光学系统的分辨率、清晰度及稳定性。因此,在光学元件制造、装配及系统集成过程中,中心偏差的精准测量与有效控制已成为保障产品性能的关键环节。本文将系统阐述中心偏差的定义、测量方法、控制措施及行业标准,为相关领域技术人员提供专业参考。
2026-01-04
-
中心偏差对成像质量有何影响?如何评估影响?
中心偏差(也称偏心、光轴偏移)是光学元件制造和装配中最常见的误差之一,对成像质量有显著影响。其本质是破坏了光学系统的旋转对称性,从而引入非对称像差,尤其在高分辨率或大孔径系统中影响更为严重。
2026-01-04
-
什么是半导体激光器?为何称它为光电子时代的核心引擎
半导体激光器作为一种通过电流注入激发光辐射的器件,它与传统激光器相比,凭借结构紧凑、效率高、寿命长且可直接用电调制的独特优势,从1962年首次在低温下运行的突破,逐步渗透到人类生产生活的各个角落,彻底重塑了通信、医疗、工业和消费电子等诸多领域的发展格局。其核心工作原理源于半导体P-N结的受激发射:当电流通过时,电子与空穴复合释放能量,在特定谐振腔内形成相干光输出,这一精妙的机制让半导体激光二极管成为现代光电子技术的核心驱动力。
2026-01-04
