什么是液体透镜?液体透镜有什么应用?
液体透镜,作为一种基于仿生学概念的新型光学元件,以其体积小、集成度高及自主变焦能力强的特点,正逐渐成为医用内窥镜光学系统设计的新焦点。本文旨在探讨如何将液体透镜技术应用于医用内窥镜,以实现在不增加系统复杂性的前提下,提升内窥镜的变焦功能。
1.液体透镜的种类及原理
液体透镜,这一仿生学光学元件,模仿人眼的调节机制,通过睫状肌的收缩与松弛调节晶状体曲率,实现变焦。液体透镜无需移动组件,具有变焦平滑、体积小、重量轻、成本低廉及加工简易等特点,适用于新型传感器及系统,用以调节像质和提高放大率,展现出广阔的应用前景。
液体透镜的实现方法主要包括:基于液体折射率变化的可变焦透镜、基于填充液体表面曲率变化的可变焦透镜和基于介质上电润湿流体接触角变化的可变焦透镜。本文主要采用了一种自行设计的可由气压或液压驱动的基于填充液体表面曲率变化的可变焦透镜。

基于填充液体表面曲率变化的可变焦透镜,通过压控方式对腔体内液体加压,改变腔体表面透明可变形薄膜的曲率半径,从而调整透镜焦距。此方法制造简便,透镜口径大小灵活,且可通过选择高折射率液体实现大范围变焦。
2.折衍混合型液体透镜
在确定所需光焦度后,液体透镜的可调节表面曲率半径即被确定,这限制了其在单片透镜上进行像差优化的能力。为解决此问题,本文提出了一种折衍混合型液体透镜,将普通液体透镜的平面玻璃基底设计为衍射光学设备。

通过将衍射光学面作为液体透镜的结构组成部分,不仅保持了透镜的重量、尺寸及结构稳定性,还为其提供了像差校正的设计自由度,使单片液体透镜的像质优化成为可能,从而提高了成像质量,拓宽了应用范围。
3.结论
当前医用内窥镜技术在局部放大观察病灶方面存在局限,用户期望在物距不变的情况下实现局部图像放大及宽景深范围内的清晰成像。传统光学设计中,变焦往往伴随着系统结构的复杂化和体积的增大,这对于医用内窥镜而言是不可接受的。本文基于高斯光学计算,提出了一种利用液体可变焦透镜实现无运动组件变焦距系统的设计思路,并设计了一种二元变焦系统,有效提升了内窥镜的成像能力,同时保持了系统的微型结构。这一设计为微型变焦距系统的设计提供了新的思路,具有广泛的应用前景。
液体可变焦透镜以其体积小、重量轻、变焦平滑、集成度高及易于控制等优点,在系统体积受限且需变焦能力的场合展现出显著优势,广泛应用于信息技术、工业生产、医疗卫生及军事国防等领域。尽管如此,液体透镜技术在变焦控制能力及系统封装方面仍有待进一步提高。
-
空心光纤商用化进程中的核心制约因素:水侵、弯曲敏感性及熔接技术难题探析
随着光通信技术向高速率、大容量方向持续演进,空心光纤作为具备独特传输优势的新型光传输介质,正加速推进商用化落地。2025年9月宁夏移动启动的空心光纤集采项目,标志着该技术已从实验室研发阶段逐步迈向实际应用场景。然而,要实现大规模产业化普及,空心光纤必须突破三大核心技术瓶颈——水侵敏感性、弯曲损耗问题及熔接技术难题,这三大制约因素直接影响其商用可行性与规模化应用效率。
2025-11-20
-
高光谱遥感如何助力解码电磁波谱的隐性信息价值
人类视觉所感知的世界,实则是电磁波谱中400700nm可见光波段的有限呈现。蓝天、绿树、红瓦等日常景象,仅为物理世界信息的“简化表征”。而隐藏在红外、紫外等波段的海量关键信息,正通过高光谱遥感技术的创新应用,逐步实现全面挖掘与高效利用。
2025-11-19
-
微小光学的技术赋能:微透镜阵列与抛物镜如何推动科技演进与应用拓展?
从便携式智能手机到深空探测的天文望远镜,光学技术已深度融入现代社会生产生活与科学研究的各个领域。微透镜阵列与抛物镜作为两类结构精巧、性能优越的核心光学器件,凭借其独特的光学原理与工程设计,正成为推动光学技术革新的关键力量,在微观尺度调控与宏观场景应用之间构建起重要技术桥梁。
2025-11-19
-
激光高亮度与定向性的核心:光子态、相格及简并度解析
激光凭借其优异的定向性与高亮度特性,在工业制造、医疗健康、航天探测等众多领域得到广泛应用。这些独特性能的本质,源于光子的有序排布机制,而这一机制的核心的在于光子态、光子相格与光子简并度三个关键概念。本文将从学术科普视角,系统解析三者的定义、关联及对激光特性的影响。
2025-11-19
