突破!基于旋转光纤滤波器的双波长锁模激光器研究成果登顶级期刊
双波长锁模光纤激光器(DMFL)在双梳光谱、双梳测距、太赫兹光谱等领域具有广泛应用前景,因此受到学界与业界的关注。相较于传统双模锁模激光器,其同一谐振腔输出的双波长锁模脉冲可有效抑制共模噪声,无需额外配置光学频率锁定装置或激光器间信号校正算法。
原理图
核心方案与创新点
路桥团队提出基于旋转光纤(SPF)滤波器的新型双波长锁模方案,其核心特性如下:
1.旋转光纤滤波器特性:借助偏振色散效应,旋转光纤后连接偏振器可形成梳状滤波器,且能使激光维持线偏振状态。该滤波器的周期与旋转光纤长度成反比——当光纤长度从3m增至39m时,周期从30nm降至2nm;通过改变旋转光纤与偏振器的夹角,可实现滤波曲线的平移。
2.激光器结构:采用全保偏单壁碳纳米管锁模光纤激光器结构,仅需调整旋转光纤与保偏光纤的熔接角度,即可实现双波长锁模。
关键参数调节与实验结果
1.重复率调节:在保持重复率差稳定在约1.5kHz的条件下,通过增加腔长,可将重复率从30MHz调控至20MHz。
2.重复率差调节:当重复率稳定在20MHz时,通过改变旋转光纤长度,可将重复率差从0.5kHz调控至1.4kHz。
3.脉冲特性:双波长脉冲的中心波长分离度(如1554nm与1580nm分离26nm)与滤波器周期一致,脉冲宽度分别为3.7ps和1.6ps,且具有良好的相干性;其中,L波段脉冲功率更高、光谱更宽(原因在于低泵浦条件下C波段的再吸收效应更为显著)。
相关研究与价值
在前期研究中,2011年,Zhao团队首次实现了稳定的重复率差(470Hz);后续研究多采用级联光纤布拉格光栅、萨格纳克环滤波器、利奥滤波器等方案。本研究通过旋转光纤滤波器,为双波长锁模光纤激光器的设计提供了更为简便、灵活的技术路径,相关成果已发表于《JournalofLightwaveTechnology》。
-
突破6G通信技术瓶颈:金属掺杂VO₂超表面实现太赫兹调制性能与速率的协同优化
在第六代移动通信(6G)技术加速研发的进程中,太赫兹波段(0.110THz)凭借其超大带宽潜力,成为支撑超高速、大容量通信的核心技术方向。然而,太赫兹调制器长期面临“性能与速率难以兼顾”的技术困境。近日,西安电子科技大学研究团队在《Photonics》期刊发表的成果,通过金属掺杂VO₂超表面的创新设计,成功破解这一矛盾,为太赫兹通信的实用化推进提供了关键技术支撑。
2025-07-31
-
算力时代光模块技术演进与 PCB 板关键技术的协同发展
在数字经济迅猛发展的当下,AI大模型训练、海量数据传输等需求正以空前速度推动信息基础设施升级。作为数据通信的核心组件,光模块及其承载载体PCB板的技术演进,成为支撑算力时代高效运转的关键。从传统电信号传输的瓶颈突破到光电协同的创新封装,光模块与PCB板的技术迭代始终围绕“更高带宽、更低功耗、更小尺寸”的核心目标展开。
2025-07-31
-
摄影中“快速镜头”的解析:光学特性与应用原理
“快速镜头”是一个常见术语,但其内涵常被初学者与快门速度、自动对焦速度等概念相混淆。实际上,镜头的“快”与“慢”具有明确的光学定义,且对成像效果存在显著影响。本文将系统阐释快速镜头的核心特性、技术原理及应用场景。
2025-07-31
-
光学成像系统的核心要素与成像质量解析
光学成像技术作为现代科技领域的重要基础,广泛应用于摄影、显微观察、医学影像诊断、工业精密检测等多个领域。该技术通过光学系统对物体反射或发射的光线进行捕捉、传导与处理,最终形成可观测与分析的清晰图像。深入理解这一技术,需从其核心构成要素、关键术语及影响成像质量的因素展开探讨。
2025-07-30