突破!德国团队借助3D纳米打印技术实现光纤焦点无惯性位移,引领光子学领域新变革
近日,国际顶尖光学期刊《Light:Science&Applications》发表了德国耶拿大学与莱布尼茨光子技术研究所MarkusA.Schmidt教授团队的一项重要研究成果。该团队首次实现了全光纤集成、快速响应且免对准的空间焦点远程动态调控,为光学操控、精密加工及生物医学等领域提供了革命性工具。

核心设计:超构光纤与全息镜的协同机制
此项研究的核心在于提出“超构光纤”这一全新概念。具体而言,研究团队通过3D纳米打印技术,在双芯光纤端面上制备出对强度敏感的纯相位全息图,该全息图直接建立了全息平面内强度分布与焦点位置的关联,构成了精准调控光焦点的关键“介质”。
其工作原理基于双芯光纤中两种导模的功率调控:通过精确调节两种模式的相对功率,可在全息图内形成受功率控制的干涉图案,进而实现焦点的可控动态偏移。研究过程涵盖计算优化、先进3D纳米打印及定制光纤制造等关键环节,实验结果与模拟数据高度吻合,验证了该单片超构光纤平台的可行性与高效性。
研究价值:推动光子学领域三重突破
该成果对光子学领域的变革体现在三个维度:
技术层面的突破性进展。相较于外部调制(如空间光调制器)的低效性与内部调制(如液晶)的缓慢性,该系统通过功率调控实现了高速响应,且达成全光纤集成,显著提升了系统的实用性与应用灵活性。
应用领域的广泛拓展。在光学镊子领域,可实现纳米级生物样本的动态捕获与精准操控;在高速激光微加工中,能够提升加工精度与效率;在电信复用及微创外科等领域,亦展现出重要应用潜力。例如,在微创外科手术中,有望通过该技术实现激光焦点的精准动态调控,提升手术的安全性与精准度。
学科层面的引领性价值。该研究为超构光纤领域开辟了新的研究方向,其强度敏感型全息图的设计思路,为多焦点阵列、纵向调焦等复杂功能的实现提供了可借鉴的理论与技术框架,对相关学科的发展具有重要启示意义。
未来展望:从技术突破到领域革新
通讯作者Schmidt教授评价此项成果时指出:“这不仅是光纤技术的进化,更是光操控理念的革新。”第一作者孙骏博士则展望,未来可通过增加纤芯数量(如增至7个),实现三维空间内焦点的动态调控。
随着该技术的持续发展与成熟,人类对光焦点的调控将迈入全光纤集成、高速响应、精准可控的新阶段。从纳米尺度的生物样本操控到高精度激光加工,从通信技术的升级到医疗领域的精准治疗,此项技术有望为光子学应用领域开辟新的发展空间,推动相关产业与学科的跨越式发展。
-
半导体抛光设备自动化应用及工艺质量管控要点探析
在半导体器件规模化量产进程中,抛光工艺作为保障晶圆加工精度与表面质量的核心环节,其设备自动化水平、工艺参数调控能力、检测体系完善度及异常处置效率,直接决定生产效率、工艺稳定性与产品良率。本文从抛光设备自动化配置要求、核心工艺参数调控、关键检测指标界定及常见工艺异常处理四个维度,系统阐述半导体抛光工艺的质量管控核心要点,为半导体抛光制程的标准化、精细化实施提供参考。
2026-02-12
-
硅晶圆激光切割核心技术深度解析:原理、工艺与质量把控
在半导体制造产业链中,硅晶圆切割是芯片成型的关键工序,其加工精度与效率直接影响芯片良品率和产业发展节奏。随着微电子器件向微型化、薄型化升级,传统切割方式的弊端逐渐显现,激光切割凭借高精度、低损伤的技术优势成为行业主流。本文从激光切割系统的硬件构成出发,深入拆解隐形切割与消融切割两大核心工艺,解析光斑、焦点的精度控制逻辑,并探讨切割质量的评价维度与效率平衡策略,系统梳理硅晶圆激光切割的核心技术体系
2026-02-12
-
无掩模激光直写技术研究概述
无掩模激光直写技术作为微纳加工领域的先进光刻技术,摒弃了传统光刻工艺对掩模版的依赖,凭借直接写入的核心特性,在复杂微纳结构制备、高精度图案加工中展现出独特优势,成为微纳加工领域的重要技术方向。本文从工作原理与流程、技术特性、现存挑战、分辨率与对准参数、核心设备及厂务动力配套要求等方面,对该技术进行全面梳理与阐述。
2026-02-12
-
SiC功率器件的高温时代:封装成为行业发展核心瓶颈
在半导体功率器件技术迭代进程中,碳化硅(SiC)凭借高温工作、高电流密度、高频开关的核心优势,成为推动功率半导体升级的关键方向,其普及大幅提升了器件的功率密度与工作效率,为功率半导体行业发展带来全新机遇。但与此同时,行业发展的核心瓶颈正悄然从芯片设计与制造环节,转移至封装层面。当SiC将功率器件的工作温度与功率密度不断推高,芯片本身已具备承受更高应力的能力,而封装环节的材料适配、热路径设计等问题却日益凸显,高温与快速功率循环叠加的工况下,焊料与热路径成为决定SiC功率模块寿命的核心因素,封装技术的发展水平,正成为制约SiC功率器件产业化落地与长期可靠应用的关键。
2026-02-12
