突破!德国团队借助3D纳米打印技术实现光纤焦点无惯性位移,引领光子学领域新变革
近日,国际顶尖光学期刊《Light:Science&Applications》发表了德国耶拿大学与莱布尼茨光子技术研究所MarkusA.Schmidt教授团队的一项重要研究成果。该团队首次实现了全光纤集成、快速响应且免对准的空间焦点远程动态调控,为光学操控、精密加工及生物医学等领域提供了革命性工具。
核心设计:超构光纤与全息镜的协同机制
此项研究的核心在于提出“超构光纤”这一全新概念。具体而言,研究团队通过3D纳米打印技术,在双芯光纤端面上制备出对强度敏感的纯相位全息图,该全息图直接建立了全息平面内强度分布与焦点位置的关联,构成了精准调控光焦点的关键“介质”。
其工作原理基于双芯光纤中两种导模的功率调控:通过精确调节两种模式的相对功率,可在全息图内形成受功率控制的干涉图案,进而实现焦点的可控动态偏移。研究过程涵盖计算优化、先进3D纳米打印及定制光纤制造等关键环节,实验结果与模拟数据高度吻合,验证了该单片超构光纤平台的可行性与高效性。
研究价值:推动光子学领域三重突破
该成果对光子学领域的变革体现在三个维度:
技术层面的突破性进展。相较于外部调制(如空间光调制器)的低效性与内部调制(如液晶)的缓慢性,该系统通过功率调控实现了高速响应,且达成全光纤集成,显著提升了系统的实用性与应用灵活性。
应用领域的广泛拓展。在光学镊子领域,可实现纳米级生物样本的动态捕获与精准操控;在高速激光微加工中,能够提升加工精度与效率;在电信复用及微创外科等领域,亦展现出重要应用潜力。例如,在微创外科手术中,有望通过该技术实现激光焦点的精准动态调控,提升手术的安全性与精准度。
学科层面的引领性价值。该研究为超构光纤领域开辟了新的研究方向,其强度敏感型全息图的设计思路,为多焦点阵列、纵向调焦等复杂功能的实现提供了可借鉴的理论与技术框架,对相关学科的发展具有重要启示意义。
未来展望:从技术突破到领域革新
通讯作者Schmidt教授评价此项成果时指出:“这不仅是光纤技术的进化,更是光操控理念的革新。”第一作者孙骏博士则展望,未来可通过增加纤芯数量(如增至7个),实现三维空间内焦点的动态调控。
随着该技术的持续发展与成熟,人类对光焦点的调控将迈入全光纤集成、高速响应、精准可控的新阶段。从纳米尺度的生物样本操控到高精度激光加工,从通信技术的升级到医疗领域的精准治疗,此项技术有望为光子学应用领域开辟新的发展空间,推动相关产业与学科的跨越式发展。
-
突破催化依赖!中山大学团队PNAS新成果:激光常温常压下实现全水分解,同步制备氢气与过氧化氢
在全球“双碳”目标推进及绿色生产需求升级的背景下,清洁氢能开发与过氧化氢环保制备已成为能源化工领域的核心议题。传统制备技术普遍面临催化剂依赖、高能耗及污染排放等瓶颈,严重制约行业可持续发展。近日,中山大学闫波教授团队在《美国国家科学院院刊》(PNAS)发表的研究成果,为破解这一困局提供了革命性方案:无需任何催化剂,仅通过脉冲激光即可在常温常压条件下直接实现全水分解,同步生成氢气与过氧化氢,且光氢能量转换效率达2.1%,为绿色能源与化工产业开辟了全新技术路径。
2025-10-13
-
哥伦比亚大学研发芯片级高功率频率梳,助力数据中心光源升级
纽约,2025年10月8日—哥伦比亚大学工程与应用科学学院的研究团队研发出一种新技术,无需依赖体积庞大且成本高昂的激光器与放大器,即可构建高功率频率梳。该团队的研究成果实现了频率梳功率向芯片的集成,进而为紧凑式、高功率、多波长光源的开发提供了可能。研究人员认为,所研发的技术方法与系统可应用于先进数据中心——此类数据中心虽已采用光纤链路传输数据,但当前仍普遍依赖单波长激光器。
2025-10-11
-
飞秒光脉冲的3D可视化:用代码“看见”看不见的光
飞秒光脉冲是一种特殊的激光信号,它的体积极小(仅几微米×几微米×几十微米),却蕴含万亿瓦量级的峰值功率——由于尺度远超出肉眼可见范围,我们无法直接用眼睛观察它。但借助不到100行的MATLAB代码,就能将这种抽象的电磁波转化为可旋转、可“飞行”的3D“光子云”(俗称“光蒲公英”)。更重要的是,这一可视化结果严格遵循麦克斯韦方程,兼具科学性与直观性。
2025-10-11
-
光模块产业“卡脖子”问题剖析,从核心芯片到全产业链的突围路径
AI集群的数据流转需求突破每秒TB级,全球数据中心带宽需求呈现每两年翻倍的增长态势,光模块作为承载光信号传输的核心器件,已成为支撑数字经济发展的关键基础设施。据行业统计数据,中国企业在全球光模块市场的份额已超过60%,在下游封装与系统集成领域形成显著竞争优势。然而,深入剖析产业结构可见,我国光模块产业呈现“倒金字塔”式发展格局——真正制约产业高质量发展、形成“卡脖子”风险的环节,并非下游组装领域,而是光模块的核心组件“激光器芯片”,以及支撑芯片制造的上游材料与设备体系。
2025-10-11