突破!德国团队借助3D纳米打印技术实现光纤焦点无惯性位移,引领光子学领域新变革
近日,国际顶尖光学期刊《Light:Science&Applications》发表了德国耶拿大学与莱布尼茨光子技术研究所MarkusA.Schmidt教授团队的一项重要研究成果。该团队首次实现了全光纤集成、快速响应且免对准的空间焦点远程动态调控,为光学操控、精密加工及生物医学等领域提供了革命性工具。
核心设计:超构光纤与全息镜的协同机制
此项研究的核心在于提出“超构光纤”这一全新概念。具体而言,研究团队通过3D纳米打印技术,在双芯光纤端面上制备出对强度敏感的纯相位全息图,该全息图直接建立了全息平面内强度分布与焦点位置的关联,构成了精准调控光焦点的关键“介质”。
其工作原理基于双芯光纤中两种导模的功率调控:通过精确调节两种模式的相对功率,可在全息图内形成受功率控制的干涉图案,进而实现焦点的可控动态偏移。研究过程涵盖计算优化、先进3D纳米打印及定制光纤制造等关键环节,实验结果与模拟数据高度吻合,验证了该单片超构光纤平台的可行性与高效性。
研究价值:推动光子学领域三重突破
该成果对光子学领域的变革体现在三个维度:
技术层面的突破性进展。相较于外部调制(如空间光调制器)的低效性与内部调制(如液晶)的缓慢性,该系统通过功率调控实现了高速响应,且达成全光纤集成,显著提升了系统的实用性与应用灵活性。
应用领域的广泛拓展。在光学镊子领域,可实现纳米级生物样本的动态捕获与精准操控;在高速激光微加工中,能够提升加工精度与效率;在电信复用及微创外科等领域,亦展现出重要应用潜力。例如,在微创外科手术中,有望通过该技术实现激光焦点的精准动态调控,提升手术的安全性与精准度。
学科层面的引领性价值。该研究为超构光纤领域开辟了新的研究方向,其强度敏感型全息图的设计思路,为多焦点阵列、纵向调焦等复杂功能的实现提供了可借鉴的理论与技术框架,对相关学科的发展具有重要启示意义。
未来展望:从技术突破到领域革新
通讯作者Schmidt教授评价此项成果时指出:“这不仅是光纤技术的进化,更是光操控理念的革新。”第一作者孙骏博士则展望,未来可通过增加纤芯数量(如增至7个),实现三维空间内焦点的动态调控。
随着该技术的持续发展与成熟,人类对光焦点的调控将迈入全光纤集成、高速响应、精准可控的新阶段。从纳米尺度的生物样本操控到高精度激光加工,从通信技术的升级到医疗领域的精准治疗,此项技术有望为光子学应用领域开辟新的发展空间,推动相关产业与学科的跨越式发展。
-
超精密光学镜片制造工艺解析:从基材处理到原子级加工的技术体系
超精密光学镜片作为现代高端装备的核心光学元件,广泛应用于天文观测、微观探测、半导体制造等关键领域,其光学性能直接决定了相关设备的功能精度与技术极限。这类镜片的制造并非传统意义上的机械加工,而是融合材料科学、精密控制与检测技术的系统性工程。在满足光学基材各项性能指标的基础上,需通过多阶段、多技术协同的加工流程,实现对材料表面的原子级精度调控。本文将系统梳理超精密光学镜片的制造技术体系,剖析传统与新兴加工技术的原理、特性及应用场景,并阐述各技术在加工闭环中的协同作用。
2025-08-27
-
激光晶体:激光技术发展的核心支撑介质
在现代科技体系中,激光技术已成为推动工业制造、医疗健康、科学研究及国防安全等领域革新的关键力量。激光晶体作为激光发生器的核心功能介质,其物理化学特性直接决定激光输出的波长、功率、效率及光束质量,是保障激光技术性能与应用拓展的基础。当前,激光晶体主要分为离子掺杂型、非线性光学型及特殊功能型三大类别,各类晶体基于独特的结构与性能,在不同应用场景中发挥不可替代的作用
2025-08-27
-
光子学技术在心血管疾病诊疗领域的创新应用与发展展望
心血管疾病(CardiovascularDisease,CVD)作为全球首要致死病因,每年导致约2000万人死亡,其疾病谱涵盖冠状动脉疾病、心肌梗死、脑卒中、心律失常及心力衰竭等多种病症,对全球公共卫生体系构成严峻挑战。长期以来,计算机断层扫描(ComputedTomography,CT)、血管造影术等传统光子学技术虽为CVD的诊断与治疗提供了重要支撑,但受限于侵入性较强、功能信息获取有限、实时监测能力不足等固有短板,难以满足临床对精准化、无创化诊疗的需求。近年来,以光声成像、光学可穿戴传感、光动力疗法为代表的新兴光子学技术快速发展,通过融合光学原理与医学诊疗需求,在提升CVD诊断精度、优化治疗方案、拓展监测场景等方面展现出显著优势,正逐步推动心血管医学向更高效、更精准、更可及的方向变革。
2025-08-27
-
光纤激光器的核心原理与主流腔型技术分析
在现代激光技术体系中,光纤激光器凭借高功率输出、优异光束质量及稳定运行特性,已在工业制造、光纤通信、医疗诊断等关键领域实现广泛应用。其技术优势的形成,源于以稀土掺杂光纤为核心的增益介质设计及多元化谐振腔结构的创新。本文基于光纤激光器的工作机制,系统阐述其核心原理,并对四类主流谐振腔的技术特征与应用场景展开深入分析。
2025-08-26