液晶集成新突破!垂直腔面发射激光器实现矢量涡旋光束灵活调控
如何实现光束的灵活调控成为科研人员探索的重要方向。近日,一项关于可调谐矢量涡旋光束垂直腔面发射激光器(VCSEL)的研究成果引发关注,科研团队通过将液晶(LC)材料与VCSEL巧妙集成,成功让激光器拥有了调控光束偏振状态和拓扑电荷的“超能力”,为激光应用开拓了全新可能。

液晶作为一种独特的有机材料,其分子结构具备极高的灵活性,能够通过电、光、热等物理量轻松实现调整。将它与VCSEL相结合,就如同给激光器装上了一个智能“调节器”,可以对相位、波长、偏振等关键光学参数进行精准调制。研究人员利用多个LC结构协同运作,最终实现了在芯片级层面上,让拓扑电荷可调谐的矢量涡旋光束激光器从设想变为现实。
这款创新的激光器由760nm的VCSEL和LC光调制器构成。其中,调制器包含LC层和涡旋光束球晶层,中间还有6μm的SU8光刻胶,它不仅能起到支撑作用,还能为VCSEL提供贴心“保护”。VCSEL本身直径60μm,高3.5μm,别看它“身材小巧”,性能却十分强大。
在光导与偏振特性方面,这款激光器表现亮眼。当紫外光照射时,LC分子结构就像被按下“变形键”,会发生奇妙变化,使得涡旋光束的轨道角动量(OAM)能在-1和+1之间自由切换,一旦停止照射,又能迅速“恢复原样”。没有紫外光时,它输出圆偏振光;在60mW/cm²紫外光照射下,立刻“变身”产生线偏振光,而且46s后LC旋转方向还会逆转,圆偏振光的旋向也随之反转。和传统四分之一波片相比,LC的加入让VCSEL的阈值电流降低了0.25mA,发散角也从10.2°减小到8.1°,有效提升了激光器的性能。

其输出的矢量涡旋光束同样极具特色,强度分布呈现出规则的环状,中心还存在奇异点,偏振纯度高达85.2%,属于方位偏振。有趣的是,紫外光照射会改变LC螺距,使得它的颜色如同彩虹般依次变化,20s后油性条纹消失,螺距方向反转,48s后又恢复初始状态,但旋向却与之前相反,就像在进行一场光学“魔术表演”。
在拓扑电荷表征上,研究人员借助干涉仪,利用涡旋光束自干涉效应,清晰观察到初始拓扑电荷为-1的叉形干涉条纹。当紫外光照射46s后,拓扑电荷变为+1,条纹开口方向也跟着反转,中心相位纯度更是达到了90%,精准展现出了光束拓扑电荷的调控效果。
这项研究提出的LC集成VCSEL直接输出矢量涡旋光束的方法,与标准化VCSEL流程完美兼容。胆甾LC的特殊性质,让激光器能够获得不同拓扑电荷的涡旋光束以及可控的中间态,为大信息密度信号输出和光学操作提供了超紧凑的光源。科研人员表示,若能进一步提高LC分子的旋转速率,未来有望实现商用高信息密度单管激光器,让这项技术在光通信、光学传感等众多领域大放异彩,为相关行业带来全新的变革与发展机遇。
-
硅光、光模块与CPO的关联及核心特性分析
硅光、光模块、CPO这些高频出现的技术术语,背后承载着数据传输效率突破的核心逻辑。从传统通信网络到新一代数据中心,光传输技术的每一次革新都离不开材料、结构与封装方式的突破。本文将带你走进光传输技术的核心圈层,揭秘硅光技术如何推动光模块从分立组装走向共封装时代,以及这条进化之路上的关键突破与未来方向。
2025-12-31
-
铋基钙钛矿展现强非线性光学响应,推动全光器件发展
近日,燕山大学与南开大学联合研究团队在无铅钙钛矿非线性光学材料领域取得重要突破。相关成果以《空间自相位调制铋基钙钛矿的强非线性响应及其全光应用》为题,发表于国际知名期刊Laser&PhotonicsReviews(2025,19(8):2401929)。该研究不仅系统揭示了有机–无机杂化铋基钙钛矿在可见光波段的优异三阶非线性光学性能,还成功演示了其在全光开关与全光二极管等关键光子器件中的实际应用潜力。
2025-12-31
-
光学三大核心元件:平面镜、凸透镜与凹透镜的原理及应用探析
从日常梳妆的镜面反射到航天探测的精密成像,从视力矫正的光学器具到芯片制造的光刻技术,光学元件已深度融入人类生产生活与尖端科技领域。平面镜、凸透镜、凹透镜作为光学系统的三大核心基石,其基于光的反射与折射规律的工作机制,构建了现代光学技术的基础框架。本文将系统阐述三者的物理原理、设计规范、应用场景及发展趋势,展现基础光学元件的科学价值与技术魅力。
2025-12-31
-
TriAngle激光束准直:一看就懂的高精度光学校准方案
激光在工业加工(切割、焊接)、医疗设备(激光手术仪)、科研实验等场景中,都需要“走得直、聚得准”。如果激光束跑偏、发散,要么加工出来的产品不合格,要么医疗操作有风险,实验数据也会出错。
传统的激光校准靠人工慢慢调,又费时间又容易出错,环境稍微变一点(比如温度、振动)就不准了。而TriAngle是专门解决这个问题的设备,能让激光校准变得简单、快速又精准。2025-12-30
