液晶集成新突破!垂直腔面发射激光器实现矢量涡旋光束灵活调控
如何实现光束的灵活调控成为科研人员探索的重要方向。近日,一项关于可调谐矢量涡旋光束垂直腔面发射激光器(VCSEL)的研究成果引发关注,科研团队通过将液晶(LC)材料与VCSEL巧妙集成,成功让激光器拥有了调控光束偏振状态和拓扑电荷的“超能力”,为激光应用开拓了全新可能。
液晶作为一种独特的有机材料,其分子结构具备极高的灵活性,能够通过电、光、热等物理量轻松实现调整。将它与VCSEL相结合,就如同给激光器装上了一个智能“调节器”,可以对相位、波长、偏振等关键光学参数进行精准调制。研究人员利用多个LC结构协同运作,最终实现了在芯片级层面上,让拓扑电荷可调谐的矢量涡旋光束激光器从设想变为现实。
这款创新的激光器由760nm的VCSEL和LC光调制器构成。其中,调制器包含LC层和涡旋光束球晶层,中间还有6μm的SU8光刻胶,它不仅能起到支撑作用,还能为VCSEL提供贴心“保护”。VCSEL本身直径60μm,高3.5μm,别看它“身材小巧”,性能却十分强大。
在光导与偏振特性方面,这款激光器表现亮眼。当紫外光照射时,LC分子结构就像被按下“变形键”,会发生奇妙变化,使得涡旋光束的轨道角动量(OAM)能在-1和+1之间自由切换,一旦停止照射,又能迅速“恢复原样”。没有紫外光时,它输出圆偏振光;在60mW/cm²紫外光照射下,立刻“变身”产生线偏振光,而且46s后LC旋转方向还会逆转,圆偏振光的旋向也随之反转。和传统四分之一波片相比,LC的加入让VCSEL的阈值电流降低了0.25mA,发散角也从10.2°减小到8.1°,有效提升了激光器的性能。
其输出的矢量涡旋光束同样极具特色,强度分布呈现出规则的环状,中心还存在奇异点,偏振纯度高达85.2%,属于方位偏振。有趣的是,紫外光照射会改变LC螺距,使得它的颜色如同彩虹般依次变化,20s后油性条纹消失,螺距方向反转,48s后又恢复初始状态,但旋向却与之前相反,就像在进行一场光学“魔术表演”。
在拓扑电荷表征上,研究人员借助干涉仪,利用涡旋光束自干涉效应,清晰观察到初始拓扑电荷为-1的叉形干涉条纹。当紫外光照射46s后,拓扑电荷变为+1,条纹开口方向也跟着反转,中心相位纯度更是达到了90%,精准展现出了光束拓扑电荷的调控效果。
这项研究提出的LC集成VCSEL直接输出矢量涡旋光束的方法,与标准化VCSEL流程完美兼容。胆甾LC的特殊性质,让激光器能够获得不同拓扑电荷的涡旋光束以及可控的中间态,为大信息密度信号输出和光学操作提供了超紧凑的光源。科研人员表示,若能进一步提高LC分子的旋转速率,未来有望实现商用高信息密度单管激光器,让这项技术在光通信、光学传感等众多领域大放异彩,为相关行业带来全新的变革与发展机遇。
-
飞秒激光技术:引领电镜载网加工进入高精度高效时代
在微纳尺度科学研究与工业检测领域,电子显微镜(以下简称“电镜”)是揭示物质微观结构、探究材料性能机理的核心观测工具。而电镜载网作为支撑与固定待测样品的关键组件,其加工质量不仅直接决定样品固定的稳定性,更对薄膜沉积效果、器件结构分析精度及最终电镜成像质量产生关键性影响。因此,研发适配微纳领域需求的载网加工技术,已成为提升电镜应用效能的重要环节。
2025-09-30
-
光的折射与光速变化机制探析
将直筷斜插入盛水容器中,肉眼可观察到筷子在水面处呈现“弯折”形态;夏季观察游泳池时,主观感知的池底深度显著浅于实际深度——此类日常现象的本质,均是光在不同介质界面发生折射的结果。在物理学范畴中,折射现象的核心特征之一是光的传播速度发生改变。然而,“光以光速传播”是大众熟知的常识,为何光在折射过程中速度会出现变化?这一问题需从光的本质属性、介质与光的相互作用等角度展开严谨分析。
2025-09-30
-
纳米尺度光与物质强耦合新突破:定向极化激元技术开辟精准调控研究新范式
2025年9月22日,国际权威期刊《NaturePhotonics》发表了一项具有里程碑意义的研究成果:由西班牙奥维耶多大学PabloAlonso-González教授与多诺斯蒂亚国际物理中心AlexeyNikitin教授联合领衔的研究团队,首次通过实验实现了纳米尺度下传播型极化激元与分子振动的定向振动强耦合(directionalvibrationalstrongcoupling,VSC)。该突破不仅为极化激元化学领域拓展了全新研究维度,更推动“光与物质相互作用的按需调控”从理论构想迈向实验验证阶段。
2025-09-30
-
从传统工艺到原子级精控了解超光滑镜片加工技术的六大核心路径
超光滑镜片作为光刻机、空间望远镜、激光雷达等高端光学系统的核心元件,其表面微观粗糙度需达到原子级水平(通常要求均方根粗糙度RMS<0.5nm),以最大限度降低光散射损耗,保障系统光学性能。前文已围绕超光滑镜片的定义、潜在危害及检测方法展开探讨,本文将系统梳理其加工技术体系,从奠定行业基础的传统工艺,到支撑当前高精度需求的先进技术,全面解析实现原子级光滑表面的六大核心路径。
2025-09-30