光纤激光器高阶效应研究重要进展:基于人工智能的逆向分析方法揭示超快脉冲物理机制
在光电子与超快光学领域,飞秒级光纤激光器的高阶色散与非线性效应解析一直是国际研究的前沿与难点。传统正向数值模拟方法在动态捕捉超短脉冲演化过程中的高阶效应时存在显著局限性,且系统中高阶物理效应系数的精确提取缺乏有效手段。佛山大学舒怡青博士、陈伟成教授团队在《ACSPhotonics》发表的最新研究中,构建了物理信息递归神经网络(Physics-InformedRecursiveNeuralNetwork,PIRNN)与介电质神经网络(DielectricNeuralNetwork,DielectricNet),实现了对光纤激光器中二阶至四阶色散、三阶至五阶非线性效应的逆向定量解析,并从介电质物理层面揭示了色散效应的本源机制。该研究为非保守系统的高阶效应分析提供了全新的跨学科研究范式。

    一、研究背景与传统方法的局限性
    超快光纤激光器在精密加工、光学频率梳、强场物理等领域具有关键应用价值。随着脉冲宽度从皮秒量级压缩至飞秒量级,光纤系统中的高阶物理效应(如高阶色散、高阶非线性)对脉冲时空特性的调制作用显著增强。传统的光线追迹法等正向模拟手段,因难以动态解析高阶效应随脉冲宽度变化的激励过程,且缺乏对系统中高阶效应系数的可靠反演方法,导致理论模型与实验结果的契合度不足。针对这一挑战,研究团队提出基于逆向工程与人工智能的新型分析框架,通过实验数据约束下的神经网络训练,实现对高阶效应系数的动态反演与物理机制解析。
    二、PIRNN模型:融合物理先验与数据驱动的灰盒架构
    研究团队开发的PIRNN模型创新性地构建了灰盒神经网络架构,其核心在于整合物理理论模型的白盒特性与神经网络的数据驱动能力:
    1.白盒模块:以高阶Ginzburg–Landau方程与非线性Schrödinger方程为理论基础,将对称分步傅里叶数值解法映射为神经网络的线性层与非线性层,确保模型结构与物理规律的一致性;
    2.黑盒模块:设计线性算子网络(LinearONet)与非线性算子网络(NonlinearONet),通过泰勒级数与多项式级数展开,对未知高阶效应的数学算子进行参数化建模,提升模型对复杂物理现象的拟合能力。
    实验验证基于环形腔光纤激光器系统,通过精确调节腔内偏振控制器参数,实现1.62ps至879fs脉冲的稳定输出。PIRNN模型以实验测得的稳态脉冲时频域数据为约束条件,通过反向传播算法优化初始随机参数,最终实现理论模拟结果与实验数据的高度吻合(均方误差低于3%)。
    三、飞秒脉冲演化中的高阶效应定量解析
    研究发现,不同脉宽条件下高阶效应的激活状态存在显著差异:
    皮秒级脉冲(1.62ps):系统行为主要由二阶色散(D₂)与三阶非线性效应(N₃)主导,光谱与自相关迹的模拟结果与实验误差小于5%,表明低阶效应已能有效描述该尺度下的脉冲演化;
    飞秒级脉冲(879fs):必须引入四阶色散(D₄)与五阶非线性效应(N₅)。其中,四阶色散通过修正低阶色散的变化率,使光谱Kelly边带的波长偏差从0.04nm降至理论收敛值;五阶非线性效应则在腔内功率密度高达10GW/cm²的条件下,解决了光谱峰值强度的匹配问题,其作用通过PIRNN模型的神经元激活状态与功率密度理论估算得到双重验证。
    基于反演得到的效应系数构建理论模型,其正向模拟的脉冲建立动力学过程(从白噪声起振至稳态)与实验观测完全一致,证实了逆向分析方法的可靠性。
    四、DielectricNet:色散效应的介电质物理本源追溯
    为揭示色散效应的物理本质,研究团队开发DielectricNet模型,基于PIRNN反演的色散参数,逆向推导二氧化硅光纤中束缚电子的电磁响应方程。模型在1550nm波长处预测的折射率为1.4667,与商用G.652D单模光纤的实验值(1.4665±0.0002)高度吻合,表明高阶色散效应与介电质中束缚电子的电磁共振特性存在直接关联。这一发现为从材料物理层面调控光纤色散特性提供了理论依据。
    五、研究意义与学术价值
    本研究首次实现了光纤激光器中高阶效应的动态逆向定量解析,其核心创新点包括:
    1.提出融合物理先验与数据驱动的灰盒神经网络架构,突破传统正向模拟的局限性;
    2.实验验证了四阶色散与五阶非线性效应在飞秒脉冲演化中的关键作用,完善了超快激光物理的理论体系;
    3.从介电质物理层面建立色散效应的微观解释模型,深化了对光纤光学基本原理的认知。
    该方法为研究以白噪声为种子源的耗散系统提供了全新的跨学科研究范式,有望在光通信系统优化、微纳光学器件设计、量子光源调控等领域发挥重要作用。未来研究可进一步拓展至复杂光学系统的多物理场耦合分析,推动超快光子学与人工智能技术的深度交叉融合。
- 
                    
                          Nature研究突破:WO3基可调彩色电子纸攻克显示技术瓶颈,像素密度超iPhone15五十倍 随着虚拟现实(VR)、增强现实(AR)等沉浸式技术的快速发展,显示器件对分辨率的需求急剧提升,需逐步趋近人眼视网膜解析极限;同时,动态显示场景对刷新率的要求及传统显示技术的物理局限,共同构成当前显示领域的核心挑战。2025年10月22日,瑞典乌普萨拉大学KunliXiong教授团队在国际顶级期刊《Nature》发表题为“Videoratetunablecolourelectronicpaperwithhumanresolution”(具有人眼分辨率的视频帧率可调彩色电子纸)的研究成果,以三氧化钨(WO3)纳米盘为核心构建新型反射式彩色电子纸,首次同时实现视频级刷新率、人眼级分辨率及全彩显示,为解决传统显示技术困境提供创新方案。 2025-10-31 
- 
                    
                          激光波长的决定机制与应用特性解析 在现代科技领域,激光的应用已渗透至商业扫描、演艺工程、工业加工、医疗诊疗等多个场景——超市收银台的红色扫描光束、舞台表演的绿色激光特效、工业车间的红外切割射线,虽同属激光范畴,却在颜色、功能上存在显著差异。这一差异的核心根源,在于“激光波长”的不同。本文将系统解析激光波长的本质、决定因素及应用场景,揭示其背后的科学原理。 2025-10-31 
- 
                    
                          三维孤子表征难题获突破:时空色散傅里叶变换技术为锁模激光器研究开辟新路径 在激光技术领域,高功率、高稳定性超快光源的研发始终是科研与工业应用的核心目标。时空锁模光纤激光器因在提升脉冲能量、探索多维非线性动力学方面具备独特潜力,已成为近年来激光物理与光学工程领域的研究热点;而其中由横模与纵模同时锁定形成的“三维孤子”,更被视为突破传统单模激光器性能瓶颈的核心研究对象。然而,长期以来,科研界始终面临一项关键难题——如何实现对三维孤子内部单个模式光谱特性的精准、实时表征。近日,华南师范大学、北京邮电大学与暨南大学的联合研究团队提出“时空色散傅里叶变换技术”,成功解决这一难题,相关成果已发表于国际权威期刊《Laser&PhotonicsReviews》,为时空锁模光纤激光器的基础研究与应用开发提供了全新技术支撑。 2025-10-31 
- 
                    
                          光学显微镜的“原子困境”终被打破 长期以来,光学显微镜面临一道难以逾越的“尺寸鸿沟”:若将原子比作一粒沙子,光波则如同海洋波浪——由于二者尺寸差异悬殊,光波在传播时往往会“错过”原子,导致科学家无法通过传统光学显微镜观察并解析单个原子。尽管超分辨率技术已突破衍射极限,能呈现分子尺度的特征,但对原子级别的观测仍束手无策,这一困境直至近日才被MIT团队的新成果打破。 2025-10-30 
 
         
                         
                         
                         
                         
         
        
