光纤激光器高阶效应研究重要进展:基于人工智能的逆向分析方法揭示超快脉冲物理机制
在光电子与超快光学领域,飞秒级光纤激光器的高阶色散与非线性效应解析一直是国际研究的前沿与难点。传统正向数值模拟方法在动态捕捉超短脉冲演化过程中的高阶效应时存在显著局限性,且系统中高阶物理效应系数的精确提取缺乏有效手段。佛山大学舒怡青博士、陈伟成教授团队在《ACSPhotonics》发表的最新研究中,构建了物理信息递归神经网络(Physics-InformedRecursiveNeuralNetwork,PIRNN)与介电质神经网络(DielectricNeuralNetwork,DielectricNet),实现了对光纤激光器中二阶至四阶色散、三阶至五阶非线性效应的逆向定量解析,并从介电质物理层面揭示了色散效应的本源机制。该研究为非保守系统的高阶效应分析提供了全新的跨学科研究范式。

一、研究背景与传统方法的局限性
超快光纤激光器在精密加工、光学频率梳、强场物理等领域具有关键应用价值。随着脉冲宽度从皮秒量级压缩至飞秒量级,光纤系统中的高阶物理效应(如高阶色散、高阶非线性)对脉冲时空特性的调制作用显著增强。传统的光线追迹法等正向模拟手段,因难以动态解析高阶效应随脉冲宽度变化的激励过程,且缺乏对系统中高阶效应系数的可靠反演方法,导致理论模型与实验结果的契合度不足。针对这一挑战,研究团队提出基于逆向工程与人工智能的新型分析框架,通过实验数据约束下的神经网络训练,实现对高阶效应系数的动态反演与物理机制解析。
二、PIRNN模型:融合物理先验与数据驱动的灰盒架构
研究团队开发的PIRNN模型创新性地构建了灰盒神经网络架构,其核心在于整合物理理论模型的白盒特性与神经网络的数据驱动能力:
1.白盒模块:以高阶Ginzburg–Landau方程与非线性Schrödinger方程为理论基础,将对称分步傅里叶数值解法映射为神经网络的线性层与非线性层,确保模型结构与物理规律的一致性;
2.黑盒模块:设计线性算子网络(LinearONet)与非线性算子网络(NonlinearONet),通过泰勒级数与多项式级数展开,对未知高阶效应的数学算子进行参数化建模,提升模型对复杂物理现象的拟合能力。
实验验证基于环形腔光纤激光器系统,通过精确调节腔内偏振控制器参数,实现1.62ps至879fs脉冲的稳定输出。PIRNN模型以实验测得的稳态脉冲时频域数据为约束条件,通过反向传播算法优化初始随机参数,最终实现理论模拟结果与实验数据的高度吻合(均方误差低于3%)。
三、飞秒脉冲演化中的高阶效应定量解析
研究发现,不同脉宽条件下高阶效应的激活状态存在显著差异:
皮秒级脉冲(1.62ps):系统行为主要由二阶色散(D₂)与三阶非线性效应(N₃)主导,光谱与自相关迹的模拟结果与实验误差小于5%,表明低阶效应已能有效描述该尺度下的脉冲演化;
飞秒级脉冲(879fs):必须引入四阶色散(D₄)与五阶非线性效应(N₅)。其中,四阶色散通过修正低阶色散的变化率,使光谱Kelly边带的波长偏差从0.04nm降至理论收敛值;五阶非线性效应则在腔内功率密度高达10GW/cm²的条件下,解决了光谱峰值强度的匹配问题,其作用通过PIRNN模型的神经元激活状态与功率密度理论估算得到双重验证。
基于反演得到的效应系数构建理论模型,其正向模拟的脉冲建立动力学过程(从白噪声起振至稳态)与实验观测完全一致,证实了逆向分析方法的可靠性。
四、DielectricNet:色散效应的介电质物理本源追溯
为揭示色散效应的物理本质,研究团队开发DielectricNet模型,基于PIRNN反演的色散参数,逆向推导二氧化硅光纤中束缚电子的电磁响应方程。模型在1550nm波长处预测的折射率为1.4667,与商用G.652D单模光纤的实验值(1.4665±0.0002)高度吻合,表明高阶色散效应与介电质中束缚电子的电磁共振特性存在直接关联。这一发现为从材料物理层面调控光纤色散特性提供了理论依据。
五、研究意义与学术价值
本研究首次实现了光纤激光器中高阶效应的动态逆向定量解析,其核心创新点包括:
1.提出融合物理先验与数据驱动的灰盒神经网络架构,突破传统正向模拟的局限性;
2.实验验证了四阶色散与五阶非线性效应在飞秒脉冲演化中的关键作用,完善了超快激光物理的理论体系;
3.从介电质物理层面建立色散效应的微观解释模型,深化了对光纤光学基本原理的认知。
该方法为研究以白噪声为种子源的耗散系统提供了全新的跨学科研究范式,有望在光通信系统优化、微纳光学器件设计、量子光源调控等领域发挥重要作用。未来研究可进一步拓展至复杂光学系统的多物理场耦合分析,推动超快光子学与人工智能技术的深度交叉融合。
-
镜头色差成因及校正技术解析:ED镜片与APO复消色差系统
在光学成像领域,色差是影响镜头成像质量的核心问题之一。尤其是在长焦拍摄、广角边缘成像或逆光、大光比等复杂场景下,画面中出现的紫边、绿边等色边现象,以及颜色浸润、边缘模糊等问题,本质上均为色差(ChromaticAberration,简称CA)导致的成像偏差。本文将系统解析色差的物理本质、产生机制,深入探讨普通镜片组合、ED镜片及APO复消色差三种校正方案的技术原理与优劣特性,并澄清行业内关于APO镜头与锐度的认知误区。
2025-12-15
-
无干涉机制赋能宽带片上角动量复用:150纳米带宽芯片技术实现
在信息技术向超高容量、微型化方向持续演进的当下,光的角动量复用技术凭借其物理正交特性,已成为破解数据传输与存储领域性能瓶颈的关键技术路径。然而,传统基于干涉法的探测方案受限于器件体积与带宽特性,难以满足芯片级集成应用的核心需求。近日,一项发表于《Science》的研究提出了无干涉角动量复用创新方案,通过设计新型纳米环孔径结构,成功实现150纳米带宽的片上并行复用,为微型化纳米光子器件的研发与应用开辟了全新路径。
2025-12-15
-
多组间隔镜片镜头的定心装配与空气间隔控制技术
在精密光学镜头(如安防监控镜头、工业检测镜头、高端成像镜头等)中,多组带空气间隔的镜片是实现高清成像的核心结构。镜片光轴的同轴度与空气间隔的精准度直接决定镜头的分辨率、像差校正效果等关键指标——若光轴偏移,会导致成像模糊、畸变;若空气间隔偏离设计值,则会破坏光学系统的共轭关系,影响画质还原。针对这类镜头,数控定心车削技术结合闭环反馈装配体系,已成为实现高精度定心装配与空气间隔控制的主流方案。
2025-12-15
-
放大的自发辐射(ASE)与受激辐射的核心机制及差异解析
在量子电子学与激光物理领域,光辐射机制的特性直接决定了光学器件的性能与应用场景。放大的自发辐射(Amplified Spontaneous Emission,ASE)作为介于自发辐射与受激辐射之间的关键光放大过程,其物理本质与两类基础辐射机制的差异,是理解光电子技术原理的核心前提。本文基于量子光学基本理论,系统梳理三者的物理机制、形成过程及核心差异,为相关领域的理论研究与技术应用提供参考。
2025-12-15
