【光学前沿】人工智能助力突破!新型单层抗反射涂层提升硅太阳能电池效率
2025年5月14日,一项在太阳能电池技术领域的重要突破引发关注。来自哈尔科夫国立大学、乌克兰国家科学院和莱布尼茨光子技术研究所的科研团队,成功开发出一种用于硅太阳能电池的新型单层抗反射(AR)涂层,其性能表现优异,为太阳能产业的发展带来了新希望。

传统硅太阳能电池面临着光反射率高的难题,在可见光和近红外光谱中,平面硅表面的光反射率高达35-50%,这使得太阳能电池的效率几乎降低一半。同时,由于空气和硅之间的高对比度,在硅太阳能电池中使用增透膜一直是个挑战,性能最高的标准薄膜增透膜多为多层且窄带,难以满足实际应用中对超薄、宽波长减反射的需求。
此次研发的新型AR涂层利用机器学习增强的光子纳米结构,即超表面,成功打破了这一困境。该涂层能够最大限度地减少广泛波长和角度范围内的太阳光反射,不仅超越了现有单层涂层,还接近了多层AR涂层的性能水平。它可有效降低500-1200纳米可见光和近红外光谱内的反射,即使在太阳光以陡峭角度照射时也能发挥作用,而传统涂层只能在较窄的波长范围(通常100-300纳米)和入射角范围内提高光透射率。
在结构设计上,新开发的基于超表面的硅抗反射涂层结合了矩形和圆柱形超原子几何结构,其反射率仅为5%,相较于非结构化硅太阳能电池约50%的反射率,大幅降低了光反射。研究人员采用正向设计和逆向设计优化算法开发超表面,正向设计基于十字形圆形超原子,通过选择适当几何参数可获得满意结果;逆向设计基于自由形状超原子几何结构,无需提前确定几何参数,有利于构建多功能宽带超表面,尤其是与人工智能(机器学习算法)集成后,逆向设计能力进一步增强。两种设计结构均展现出单层结构中最高的抗反射性能,其中基于超表面的增透膜在直射角下仅反射2%的入射光,在高达60°的角度范围内,斜入射角下反射约4.4%的入射光,反射抑制较非结构化平面硅表面提高了约一个数量级。
这项研究成果意义深远,不仅表明人工智能能够有效提高主流太阳能电池板所用硅太阳能电池增透膜的效率,而且基于超表面的涂层性能优异且相对简单,有望加速向清洁能源的过渡。此外,机器学习辅助设计方法还将改进科学家设计超表面的方式,推动其在光学和光子学领域的广泛应用,为传感器和其他光学设备开辟出多功能光子涂层的新道路。目前,该研究已发表在《AdvancedPhotonicsNexus》。
-
干涉测量术的原理、应用及技术演进研究
从宇宙天体的精细化观测到纳米级工业制造的质量管控,干涉测量术基于波的干涉效应,已发展为现代科学研究与工业生产中不可或缺的精准测量技术支撑。该技术以激光为核心载体,通过系统解析波的干涉规律,在跨学科领域实现了测量精度与应用范围的双重突破,成为推动科技进步的关键基础性工具。
2025-11-17
-
什么是柱镜光栅?微米级光学技术引领视觉领域革新
当裸眼3D影像突破平面束缚,当立体成像技术赋能产品包装升级,当光学隐身从科幻概念走向技术实践,柱镜光栅这一核心光学材料正凭借其独特的技术特性,在多个领域推动视觉体验与应用场景的深度变革。作为由微米级圆柱状凸透镜阵列构成的功能性光学材料,柱镜光栅以精准调控光线传播路径的核心能力,成为连接微观结构与宏观视觉应用的关键桥梁。
2025-11-17
-
突破性进展:阿秒涡旋脉冲串成功实现,拓展超快光-物质相互作用研究新维度
在超快光学领域,阿秒脉冲技术已成为观察原子、离子、分子等微观体系中超快电子动力学的重要手段,而轨道角动量这一关键自由度的引入,为该技术的创新发展提供了全新方向。近日,西班牙萨拉曼卡大学AlbadelasHeras教授、美国科罗拉多矿业学院DavidSchmidt教授领衔的联合研究团队,在国际权威期刊《Optica》(Vol.11,No.8)发表重磅研究成果,成功研发出阿秒涡旋脉冲串这一新型超快结构化光场。该成果通过创新性技术方案突破传统瓶颈,为化学、生物、凝聚态物理及磁学等多学科前沿研究提供了具备高时间分辨率与多维调控能力的独特工具。
2025-11-17
-
清华大学提出神经光瞳工程傅里叶叠层成像技术实现大视场高分辨率显微成像突破
在科研与医疗领域,显微镜的大视场观测与高分辨率成像需求长期存在相互制约的技术矛盾。当观测视场扩大时,边缘区域易出现图像失真、细节模糊等问题,严重影响后续分析与应用。清华大学曹良才课题组提出的神经光瞳工程傅里叶叠层成像(NePEFPM)新方法,成功破解这一技术瓶颈,为大视场高分辨率显微成像提供了创新性解决方案。相关研究成果发表于国际权威期刊《Optica》。
2025-11-17
