【光学前沿】人工智能助力突破!新型单层抗反射涂层提升硅太阳能电池效率
2025年5月14日,一项在太阳能电池技术领域的重要突破引发关注。来自哈尔科夫国立大学、乌克兰国家科学院和莱布尼茨光子技术研究所的科研团队,成功开发出一种用于硅太阳能电池的新型单层抗反射(AR)涂层,其性能表现优异,为太阳能产业的发展带来了新希望。
传统硅太阳能电池面临着光反射率高的难题,在可见光和近红外光谱中,平面硅表面的光反射率高达35-50%,这使得太阳能电池的效率几乎降低一半。同时,由于空气和硅之间的高对比度,在硅太阳能电池中使用增透膜一直是个挑战,性能最高的标准薄膜增透膜多为多层且窄带,难以满足实际应用中对超薄、宽波长减反射的需求。
此次研发的新型AR涂层利用机器学习增强的光子纳米结构,即超表面,成功打破了这一困境。该涂层能够最大限度地减少广泛波长和角度范围内的太阳光反射,不仅超越了现有单层涂层,还接近了多层AR涂层的性能水平。它可有效降低500-1200纳米可见光和近红外光谱内的反射,即使在太阳光以陡峭角度照射时也能发挥作用,而传统涂层只能在较窄的波长范围(通常100-300纳米)和入射角范围内提高光透射率。
在结构设计上,新开发的基于超表面的硅抗反射涂层结合了矩形和圆柱形超原子几何结构,其反射率仅为5%,相较于非结构化硅太阳能电池约50%的反射率,大幅降低了光反射。研究人员采用正向设计和逆向设计优化算法开发超表面,正向设计基于十字形圆形超原子,通过选择适当几何参数可获得满意结果;逆向设计基于自由形状超原子几何结构,无需提前确定几何参数,有利于构建多功能宽带超表面,尤其是与人工智能(机器学习算法)集成后,逆向设计能力进一步增强。两种设计结构均展现出单层结构中最高的抗反射性能,其中基于超表面的增透膜在直射角下仅反射2%的入射光,在高达60°的角度范围内,斜入射角下反射约4.4%的入射光,反射抑制较非结构化平面硅表面提高了约一个数量级。
这项研究成果意义深远,不仅表明人工智能能够有效提高主流太阳能电池板所用硅太阳能电池增透膜的效率,而且基于超表面的涂层性能优异且相对简单,有望加速向清洁能源的过渡。此外,机器学习辅助设计方法还将改进科学家设计超表面的方式,推动其在光学和光子学领域的广泛应用,为传感器和其他光学设备开辟出多功能光子涂层的新道路。目前,该研究已发表在《AdvancedPhotonicsNexus》。
-
飞秒激光技术:引领电镜载网加工进入高精度高效时代
在微纳尺度科学研究与工业检测领域,电子显微镜(以下简称“电镜”)是揭示物质微观结构、探究材料性能机理的核心观测工具。而电镜载网作为支撑与固定待测样品的关键组件,其加工质量不仅直接决定样品固定的稳定性,更对薄膜沉积效果、器件结构分析精度及最终电镜成像质量产生关键性影响。因此,研发适配微纳领域需求的载网加工技术,已成为提升电镜应用效能的重要环节。
2025-09-30
-
光的折射与光速变化机制探析
将直筷斜插入盛水容器中,肉眼可观察到筷子在水面处呈现“弯折”形态;夏季观察游泳池时,主观感知的池底深度显著浅于实际深度——此类日常现象的本质,均是光在不同介质界面发生折射的结果。在物理学范畴中,折射现象的核心特征之一是光的传播速度发生改变。然而,“光以光速传播”是大众熟知的常识,为何光在折射过程中速度会出现变化?这一问题需从光的本质属性、介质与光的相互作用等角度展开严谨分析。
2025-09-30
-
纳米尺度光与物质强耦合新突破:定向极化激元技术开辟精准调控研究新范式
2025年9月22日,国际权威期刊《NaturePhotonics》发表了一项具有里程碑意义的研究成果:由西班牙奥维耶多大学PabloAlonso-González教授与多诺斯蒂亚国际物理中心AlexeyNikitin教授联合领衔的研究团队,首次通过实验实现了纳米尺度下传播型极化激元与分子振动的定向振动强耦合(directionalvibrationalstrongcoupling,VSC)。该突破不仅为极化激元化学领域拓展了全新研究维度,更推动“光与物质相互作用的按需调控”从理论构想迈向实验验证阶段。
2025-09-30
-
从传统工艺到原子级精控了解超光滑镜片加工技术的六大核心路径
超光滑镜片作为光刻机、空间望远镜、激光雷达等高端光学系统的核心元件,其表面微观粗糙度需达到原子级水平(通常要求均方根粗糙度RMS<0.5nm),以最大限度降低光散射损耗,保障系统光学性能。前文已围绕超光滑镜片的定义、潜在危害及检测方法展开探讨,本文将系统梳理其加工技术体系,从奠定行业基础的传统工艺,到支撑当前高精度需求的先进技术,全面解析实现原子级光滑表面的六大核心路径。
2025-09-30