【光学前沿】人工智能助力突破!新型单层抗反射涂层提升硅太阳能电池效率
2025年5月14日,一项在太阳能电池技术领域的重要突破引发关注。来自哈尔科夫国立大学、乌克兰国家科学院和莱布尼茨光子技术研究所的科研团队,成功开发出一种用于硅太阳能电池的新型单层抗反射(AR)涂层,其性能表现优异,为太阳能产业的发展带来了新希望。

传统硅太阳能电池面临着光反射率高的难题,在可见光和近红外光谱中,平面硅表面的光反射率高达35-50%,这使得太阳能电池的效率几乎降低一半。同时,由于空气和硅之间的高对比度,在硅太阳能电池中使用增透膜一直是个挑战,性能最高的标准薄膜增透膜多为多层且窄带,难以满足实际应用中对超薄、宽波长减反射的需求。
此次研发的新型AR涂层利用机器学习增强的光子纳米结构,即超表面,成功打破了这一困境。该涂层能够最大限度地减少广泛波长和角度范围内的太阳光反射,不仅超越了现有单层涂层,还接近了多层AR涂层的性能水平。它可有效降低500-1200纳米可见光和近红外光谱内的反射,即使在太阳光以陡峭角度照射时也能发挥作用,而传统涂层只能在较窄的波长范围(通常100-300纳米)和入射角范围内提高光透射率。
在结构设计上,新开发的基于超表面的硅抗反射涂层结合了矩形和圆柱形超原子几何结构,其反射率仅为5%,相较于非结构化硅太阳能电池约50%的反射率,大幅降低了光反射。研究人员采用正向设计和逆向设计优化算法开发超表面,正向设计基于十字形圆形超原子,通过选择适当几何参数可获得满意结果;逆向设计基于自由形状超原子几何结构,无需提前确定几何参数,有利于构建多功能宽带超表面,尤其是与人工智能(机器学习算法)集成后,逆向设计能力进一步增强。两种设计结构均展现出单层结构中最高的抗反射性能,其中基于超表面的增透膜在直射角下仅反射2%的入射光,在高达60°的角度范围内,斜入射角下反射约4.4%的入射光,反射抑制较非结构化平面硅表面提高了约一个数量级。
这项研究成果意义深远,不仅表明人工智能能够有效提高主流太阳能电池板所用硅太阳能电池增透膜的效率,而且基于超表面的涂层性能优异且相对简单,有望加速向清洁能源的过渡。此外,机器学习辅助设计方法还将改进科学家设计超表面的方式,推动其在光学和光子学领域的广泛应用,为传感器和其他光学设备开辟出多功能光子涂层的新道路。目前,该研究已发表在《AdvancedPhotonicsNexus》。
-
半导体抛光设备自动化应用及工艺质量管控要点探析
在半导体器件规模化量产进程中,抛光工艺作为保障晶圆加工精度与表面质量的核心环节,其设备自动化水平、工艺参数调控能力、检测体系完善度及异常处置效率,直接决定生产效率、工艺稳定性与产品良率。本文从抛光设备自动化配置要求、核心工艺参数调控、关键检测指标界定及常见工艺异常处理四个维度,系统阐述半导体抛光工艺的质量管控核心要点,为半导体抛光制程的标准化、精细化实施提供参考。
2026-02-12
-
硅晶圆激光切割核心技术深度解析:原理、工艺与质量把控
在半导体制造产业链中,硅晶圆切割是芯片成型的关键工序,其加工精度与效率直接影响芯片良品率和产业发展节奏。随着微电子器件向微型化、薄型化升级,传统切割方式的弊端逐渐显现,激光切割凭借高精度、低损伤的技术优势成为行业主流。本文从激光切割系统的硬件构成出发,深入拆解隐形切割与消融切割两大核心工艺,解析光斑、焦点的精度控制逻辑,并探讨切割质量的评价维度与效率平衡策略,系统梳理硅晶圆激光切割的核心技术体系
2026-02-12
-
无掩模激光直写技术研究概述
无掩模激光直写技术作为微纳加工领域的先进光刻技术,摒弃了传统光刻工艺对掩模版的依赖,凭借直接写入的核心特性,在复杂微纳结构制备、高精度图案加工中展现出独特优势,成为微纳加工领域的重要技术方向。本文从工作原理与流程、技术特性、现存挑战、分辨率与对准参数、核心设备及厂务动力配套要求等方面,对该技术进行全面梳理与阐述。
2026-02-12
-
SiC功率器件的高温时代:封装成为行业发展核心瓶颈
在半导体功率器件技术迭代进程中,碳化硅(SiC)凭借高温工作、高电流密度、高频开关的核心优势,成为推动功率半导体升级的关键方向,其普及大幅提升了器件的功率密度与工作效率,为功率半导体行业发展带来全新机遇。但与此同时,行业发展的核心瓶颈正悄然从芯片设计与制造环节,转移至封装层面。当SiC将功率器件的工作温度与功率密度不断推高,芯片本身已具备承受更高应力的能力,而封装环节的材料适配、热路径设计等问题却日益凸显,高温与快速功率循环叠加的工况下,焊料与热路径成为决定SiC功率模块寿命的核心因素,封装技术的发展水平,正成为制约SiC功率器件产业化落地与长期可靠应用的关键。
2026-02-12
