桂林电子科技大学团队实现光纤技术DIY,助力创新与创造自由
近期,桂林电子科技大学苑立波教授团队在光纤技术领域取得了重要突破,其研究的特种光纤DIY实验室系统为光纤技术的创新应用提供了全新的思路和方法。

生物医疗领域对光纤技术的新需求
光纤技术在生物医疗领域的应用前景广阔,但随着研究的深入,对特种光纤的结构和功能提出了更高要求。例如,除了传统的光信号传输功能外,还需要增加微流药液输入、体液获取、电信号采集与刺激等功能,并期望将这些功能集成到一根光纤上,同时需要匹配的扇入扇出器件和光纤微加工工艺。
特种光纤DIY实验室系统的创新
苑立波教授团队提出的特种光纤DIY实验室系统,打破了传统光纤制造方式的局限。该系统能够实现新型光纤与器件的灵活设计与制造,满足生物医疗领域对光纤多样化和灵活性的需求。其制备过程包括根据功能需求对光纤结构进行反向设计,按收缩比放大后完成过渡功能单元的设计,拉制多空石英毛细管预制构件,将各功能光纤单元精密装配到多孔石英管中形成预制构件,最后使用小型化的光纤拉丝设备制成多功能特种光纤及其匹配扇入器件。
特种光纤DIY系统的优势
特种光纤DIY实验室系统具有独特的加工方式,生产的光纤能直接连带光纤扇入器加工制备,并通过石英锥体低损耗连接。它一体化拉制成与集成式扇入器天然互连的特种多功能光纤,有效抑制了插入损耗和串扰。此外,该系统还介绍了多种桌面光纤器件DIY实验装置及其相关器件的功能与应用,如光纤透镜的制备、光纤扭转、光纤侧面抛磨等装置,为光纤技术的创新提供了更多的可能性。
光纤技术创新的多维度视角
光纤技术创新包括三个维度:应用与需求是牵引力和驱动力;光纤的功能与结构是为了满足需求的伴生创新维度;光纤器件是为了满足光纤系统整体功能而需要完成的部件功能。加工制造能力是实现这些创新的基础和保障。
桂林电子科技大学苑立波教授团队的这项研究,不仅为光纤技术在生物医疗等领域的应用提供了新的解决方案,也为整个光纤技术领域的创新发展开辟了新的路径,推动了光纤技术从思想创新到实践创造的自由转变。
-
硅光、光模块与CPO的关联及核心特性分析
硅光、光模块、CPO这些高频出现的技术术语,背后承载着数据传输效率突破的核心逻辑。从传统通信网络到新一代数据中心,光传输技术的每一次革新都离不开材料、结构与封装方式的突破。本文将带你走进光传输技术的核心圈层,揭秘硅光技术如何推动光模块从分立组装走向共封装时代,以及这条进化之路上的关键突破与未来方向。
2025-12-31
-
铋基钙钛矿展现强非线性光学响应,推动全光器件发展
近日,燕山大学与南开大学联合研究团队在无铅钙钛矿非线性光学材料领域取得重要突破。相关成果以《空间自相位调制铋基钙钛矿的强非线性响应及其全光应用》为题,发表于国际知名期刊Laser&PhotonicsReviews(2025,19(8):2401929)。该研究不仅系统揭示了有机–无机杂化铋基钙钛矿在可见光波段的优异三阶非线性光学性能,还成功演示了其在全光开关与全光二极管等关键光子器件中的实际应用潜力。
2025-12-31
-
光学三大核心元件:平面镜、凸透镜与凹透镜的原理及应用探析
从日常梳妆的镜面反射到航天探测的精密成像,从视力矫正的光学器具到芯片制造的光刻技术,光学元件已深度融入人类生产生活与尖端科技领域。平面镜、凸透镜、凹透镜作为光学系统的三大核心基石,其基于光的反射与折射规律的工作机制,构建了现代光学技术的基础框架。本文将系统阐述三者的物理原理、设计规范、应用场景及发展趋势,展现基础光学元件的科学价值与技术魅力。
2025-12-31
-
TriAngle激光束准直:一看就懂的高精度光学校准方案
激光在工业加工(切割、焊接)、医疗设备(激光手术仪)、科研实验等场景中,都需要“走得直、聚得准”。如果激光束跑偏、发散,要么加工出来的产品不合格,要么医疗操作有风险,实验数据也会出错。
传统的激光校准靠人工慢慢调,又费时间又容易出错,环境稍微变一点(比如温度、振动)就不准了。而TriAngle是专门解决这个问题的设备,能让激光校准变得简单、快速又精准。2025-12-30
