桂林电子科技大学团队实现光纤技术DIY,助力创新与创造自由
近期,桂林电子科技大学苑立波教授团队在光纤技术领域取得了重要突破,其研究的特种光纤DIY实验室系统为光纤技术的创新应用提供了全新的思路和方法。

生物医疗领域对光纤技术的新需求
光纤技术在生物医疗领域的应用前景广阔,但随着研究的深入,对特种光纤的结构和功能提出了更高要求。例如,除了传统的光信号传输功能外,还需要增加微流药液输入、体液获取、电信号采集与刺激等功能,并期望将这些功能集成到一根光纤上,同时需要匹配的扇入扇出器件和光纤微加工工艺。
特种光纤DIY实验室系统的创新
苑立波教授团队提出的特种光纤DIY实验室系统,打破了传统光纤制造方式的局限。该系统能够实现新型光纤与器件的灵活设计与制造,满足生物医疗领域对光纤多样化和灵活性的需求。其制备过程包括根据功能需求对光纤结构进行反向设计,按收缩比放大后完成过渡功能单元的设计,拉制多空石英毛细管预制构件,将各功能光纤单元精密装配到多孔石英管中形成预制构件,最后使用小型化的光纤拉丝设备制成多功能特种光纤及其匹配扇入器件。
特种光纤DIY系统的优势
特种光纤DIY实验室系统具有独特的加工方式,生产的光纤能直接连带光纤扇入器加工制备,并通过石英锥体低损耗连接。它一体化拉制成与集成式扇入器天然互连的特种多功能光纤,有效抑制了插入损耗和串扰。此外,该系统还介绍了多种桌面光纤器件DIY实验装置及其相关器件的功能与应用,如光纤透镜的制备、光纤扭转、光纤侧面抛磨等装置,为光纤技术的创新提供了更多的可能性。
光纤技术创新的多维度视角
光纤技术创新包括三个维度:应用与需求是牵引力和驱动力;光纤的功能与结构是为了满足需求的伴生创新维度;光纤器件是为了满足光纤系统整体功能而需要完成的部件功能。加工制造能力是实现这些创新的基础和保障。
桂林电子科技大学苑立波教授团队的这项研究,不仅为光纤技术在生物医疗等领域的应用提供了新的解决方案,也为整个光纤技术领域的创新发展开辟了新的路径,推动了光纤技术从思想创新到实践创造的自由转变。
-
干涉测量术的原理、应用及技术演进研究
从宇宙天体的精细化观测到纳米级工业制造的质量管控,干涉测量术基于波的干涉效应,已发展为现代科学研究与工业生产中不可或缺的精准测量技术支撑。该技术以激光为核心载体,通过系统解析波的干涉规律,在跨学科领域实现了测量精度与应用范围的双重突破,成为推动科技进步的关键基础性工具。
2025-11-17
-
什么是柱镜光栅?微米级光学技术引领视觉领域革新
当裸眼3D影像突破平面束缚,当立体成像技术赋能产品包装升级,当光学隐身从科幻概念走向技术实践,柱镜光栅这一核心光学材料正凭借其独特的技术特性,在多个领域推动视觉体验与应用场景的深度变革。作为由微米级圆柱状凸透镜阵列构成的功能性光学材料,柱镜光栅以精准调控光线传播路径的核心能力,成为连接微观结构与宏观视觉应用的关键桥梁。
2025-11-17
-
突破性进展:阿秒涡旋脉冲串成功实现,拓展超快光-物质相互作用研究新维度
在超快光学领域,阿秒脉冲技术已成为观察原子、离子、分子等微观体系中超快电子动力学的重要手段,而轨道角动量这一关键自由度的引入,为该技术的创新发展提供了全新方向。近日,西班牙萨拉曼卡大学AlbadelasHeras教授、美国科罗拉多矿业学院DavidSchmidt教授领衔的联合研究团队,在国际权威期刊《Optica》(Vol.11,No.8)发表重磅研究成果,成功研发出阿秒涡旋脉冲串这一新型超快结构化光场。该成果通过创新性技术方案突破传统瓶颈,为化学、生物、凝聚态物理及磁学等多学科前沿研究提供了具备高时间分辨率与多维调控能力的独特工具。
2025-11-17
-
清华大学提出神经光瞳工程傅里叶叠层成像技术实现大视场高分辨率显微成像突破
在科研与医疗领域,显微镜的大视场观测与高分辨率成像需求长期存在相互制约的技术矛盾。当观测视场扩大时,边缘区域易出现图像失真、细节模糊等问题,严重影响后续分析与应用。清华大学曹良才课题组提出的神经光瞳工程傅里叶叠层成像(NePEFPM)新方法,成功破解这一技术瓶颈,为大视场高分辨率显微成像提供了创新性解决方案。相关研究成果发表于国际权威期刊《Optica》。
2025-11-17
