PrismMaster®测角仪:气浮转台+塔差补偿+±0.25″精度,多尺寸样品承载,满足全场景光学角度测量需求
在现代精密光学测量领域,角度测量的精度不仅是技术的核心指标,更是决定光学系统性能与可靠性的关键因素。随着航空航天、国防、医疗设备以及精密制造等领域对光学元件精度要求的不断提高,传统的测量工具已无法满足日益严苛的应用需求。PrismMaster®系列精密测角仪凭借其卓越的性能和广泛的应用场景,成为光学制造与科研领域的核心工具,重新定义了角度测量的行业标准。

核心技术与优势
PrismMaster®系列精密测角仪采用了两项核心技术:高精度自准直光管和带有高精度旋转编码器的气浮转台。自准直光管通过高灵敏度的光学系统,能够捕捉极其微小的角度变化,确保测量的精确性。而气浮转台的设计则是该系列仪器的核心亮点。通过气浮技术,转台的轴向和径向跳动量被严格控制在优于50纳米的范围内,这种超高的稳定性为测量过程提供了卓越的重复性和可靠性。
此外,PrismMaster®系列配备了多种尺寸的样品承载台,能够适配从微型光学元件到大型光学系统的各种平面光学器件。无论是棱镜、多面棱体、光楔还是窗口,该系列仪器都能提供精准的角度测量解决方案,满足从实验室研发到工业生产的多样化需求。
在软件方面,PrismMaster®系列配备了先进的塔差补偿功能。塔差是光学测量中常见的系统误差,通过这一功能,仪器能够自动校正测量过程中的偏差,确保最终结果的高精度与高可靠性。对于需要极高精度的光学系统,如惯性导航系统和精密仪器制造,这一功能尤为重要,能够显著提升测量的准确性和一致性。
旗舰型号:PrismMaster®300HR
作为PrismMaster®系列的旗舰型号,PrismMaster®300HR是一款专为高精度应用设计的紧凑型全自动测角仪。其塔差测量精度达到±2.0″,角度测量精度高达±0.25″,在行业内处于领先地位。这种超高的精度使其特别适用于惯性导航系统中关键元器件的角度校准,确保这些高精度设备的可靠运行。
除了卓越的测量性能,PrismMaster®300HR还通过其紧凑的设计和自动化功能,大幅提升了测量效率和操作便利性。仪器内置的智能控制系统能够自动完成测量流程,减少人为操作误差,同时支持多种数据输出格式,便于用户进行后续分析和处理。这种高效、智能的设计使其成为现代光学实验室和生产线上不可或缺的测量工具。
应用场景
PrismMaster®系列精密测角仪的应用场景覆盖了多个高端领域。在航空航天领域,该系列仪器被广泛用于惯性导航系统、光学陀螺仪和卫星光学组件的校准与检测,确保这些关键设备的高精度运行。在国防领域,其高精度测量能力为光学瞄准系统、激光制导设备等提供了可靠的测量支持。
在医疗设备领域,PrismMaster®系列为眼科仪器、手术导航系统等高精度光学设备提供了精准的角度测量解决方案,确保这些设备在使用中的安全性和可靠性。而在精密制造领域,无论是半导体光刻设备还是高端光学镜头的生产,PrismMaster®都能提供稳定的测量支持,帮助制造商提升产品质量和生产效率。
联系欧光科技
欧光科技致力于通过创新技术为客户提供卓越的测量解决方案。我们的专业团队拥有丰富的行业经验和深厚的技术背景,能够根据客户的特定需求提供定制化的解决方案。
如果您希望了解更多关于PrismMaster®系列的技术细节,或者需要为您的项目定制测量方案,请随时联系欧光科技。我们将为您提供全面的技术支持与服务,帮助您实现光学测量的卓越性能。
-
干涉测量术的原理、应用及技术演进研究
从宇宙天体的精细化观测到纳米级工业制造的质量管控,干涉测量术基于波的干涉效应,已发展为现代科学研究与工业生产中不可或缺的精准测量技术支撑。该技术以激光为核心载体,通过系统解析波的干涉规律,在跨学科领域实现了测量精度与应用范围的双重突破,成为推动科技进步的关键基础性工具。
2025-11-17
-
什么是柱镜光栅?微米级光学技术引领视觉领域革新
当裸眼3D影像突破平面束缚,当立体成像技术赋能产品包装升级,当光学隐身从科幻概念走向技术实践,柱镜光栅这一核心光学材料正凭借其独特的技术特性,在多个领域推动视觉体验与应用场景的深度变革。作为由微米级圆柱状凸透镜阵列构成的功能性光学材料,柱镜光栅以精准调控光线传播路径的核心能力,成为连接微观结构与宏观视觉应用的关键桥梁。
2025-11-17
-
突破性进展:阿秒涡旋脉冲串成功实现,拓展超快光-物质相互作用研究新维度
在超快光学领域,阿秒脉冲技术已成为观察原子、离子、分子等微观体系中超快电子动力学的重要手段,而轨道角动量这一关键自由度的引入,为该技术的创新发展提供了全新方向。近日,西班牙萨拉曼卡大学AlbadelasHeras教授、美国科罗拉多矿业学院DavidSchmidt教授领衔的联合研究团队,在国际权威期刊《Optica》(Vol.11,No.8)发表重磅研究成果,成功研发出阿秒涡旋脉冲串这一新型超快结构化光场。该成果通过创新性技术方案突破传统瓶颈,为化学、生物、凝聚态物理及磁学等多学科前沿研究提供了具备高时间分辨率与多维调控能力的独特工具。
2025-11-17
-
清华大学提出神经光瞳工程傅里叶叠层成像技术实现大视场高分辨率显微成像突破
在科研与医疗领域,显微镜的大视场观测与高分辨率成像需求长期存在相互制约的技术矛盾。当观测视场扩大时,边缘区域易出现图像失真、细节模糊等问题,严重影响后续分析与应用。清华大学曹良才课题组提出的神经光瞳工程傅里叶叠层成像(NePEFPM)新方法,成功破解这一技术瓶颈,为大视场高分辨率显微成像提供了创新性解决方案。相关研究成果发表于国际权威期刊《Optica》。
2025-11-17
