高功率光纤激光的现状与趋势
高功率光纤激光技术在21世纪以来取得了飞速发展,成为激光与光电子学领域的研究热点和行业应用的前沿。本文将深入探讨高功率光纤激光的现状与未来发展趋势。

高功率光纤激光的现状
功率指标的“滞涨”现象
从功率指标来看,部分高功率光纤激光数据似乎出现了一定程度的“滞涨”。例如,1万瓦级单模掺镱光纤激光在2009年就已实现,1千瓦级掺铥光纤激光在2010年实现,300瓦级铒镱共掺光纤激光在2007年实现,2018年实现了600瓦级多模激光。这些数据表明,单纯从功率指标上看,技术水平提升并不明显。
不同视角下的发展
1.线宽视角:按照输出线宽分类,高功率光纤激光可分为单频激光、窄线宽激光、常规线宽激光、宽谱激光和超宽谱激光等五种类型。与10年前相比,单频光纤激光从300瓦级提升至1千瓦级,窄线宽光纤激光从2千瓦级提升至7千瓦级,宽谱激光从千瓦级提升至6千瓦级,超宽谱激光从400瓦级提升至1千瓦级,呈现出对称性发展。
2.偏振角度:2017年,作者所在课题组对不同类型的线偏振光纤激光最高输出功率进行初步统计,发现很多类型的线偏振激光与对应的随机偏振激光的最高输出功率比值约为1:2或者1:3。当前,除常规线宽激光类型外,其余类型的线偏振激光与随机偏振激光最高输出功率基本一致,表明线偏振高功率激光取得了高速发展。
3.功率定标放大潜力:科研人员通过掺镱光纤、多组分光纤、掺磷光纤等技术,将量子亏损降低至1%左右,输出功率从毫瓦级提升至千瓦级,为提升单束激光的输出功率提供了新思路。
高功率光纤激光的发展趋势
科学边界的探索
1.极限波长:在掺杂光纤的发射谱范围内实现高功率激光输出是典型场景,但在“非舒适区”实现高功率输出是研究人员追求的目标。例如,IPGPhotonics公司2020年报道在1007nm、1010nm和1018nm中心波长分别实现0.75kW、0.90kW、1.33kW全光纤结构单模高功率输出。
2.极短脉冲:科研人员在不断探索高功率超短脉冲的脉宽极限。例如,MaxBorn研究所等单位联合课题组2019年报道实现10fs级脉宽、300W级高平均功率光纤激光输出。
关键技术的突破
1.极长传输:受非线性效应等因素影响,高功率光纤激光的传输难度较大。近年来,研究人员在微结构光纤等关键技术上取得重要突破,实现基于反谐振光纤的千瓦单模激光千米传输等代表性结果,为长距离能量输运等奠定了技术基础。
2.极多功能:随着光纤制备和光纤器件的创新改进、光电子等技术的广泛应用,激光时空特性的编辑能力逐步提升,激光器的功能日益多元,单机多用的能力逐步呈现。
自身性能的提升
1.极其紧凑:研究人员高度关注激光器体积、重量、稳定度等性能的提升。例如,采用相变储能和相变制冷组合的温控方式,对激光器进行光学、电学和温控一体化设计,使激光器质量减小超过60%,体积减小近90%。
2.极为可靠:科研人员不断拓宽光纤激光的温度范围,使其能在极端温度条件下正常工作。例如,已有在零下20到零上50均能正常工作的高功率掺铥光纤激光,在室温、极端温度(零下40或零上50)和振动(加速度为1.5g)环境下能保持快速锁模自启动和重复频率锁定功能的皮秒脉冲光纤激光器的报道。
应用范围的拓展
1.极端环境:科研人员不断拓宽光纤激光的温度范围,使其能在极端温度条件下正常工作。例如,已有在零下20到零上50均能正常工作的高功率掺铥光纤激光,在室温、极端温度(零下40或零上50)和振动(加速度为1.5g)环境下能保持快速锁模自启动和重复频率锁定功能的皮秒脉冲光纤激光器的报道。
2.极高功率:面向100mm以上厚板切割等应用需求,研究人员通过光束合成的方式快速提高光纤激光系统的输出功率。在2023年6月到9月这短短3个月时间内,已经有4家单位研发了输出功率超过150kW的激光系统,最高输出功率已经超过200kW。
高功率光纤激光技术正处于高速发展的状态,未来将继续在科学边界探索、关键技术突破、自身性能提升和应用范围拓展等方面取得重要进展。要深入推进和实现相关目标,需要基础理论、激光加工、光纤器件、设计软件、仪器设备、合成技术等多方面继续取得突破。
-
干涉测量术的原理、应用及技术演进研究
从宇宙天体的精细化观测到纳米级工业制造的质量管控,干涉测量术基于波的干涉效应,已发展为现代科学研究与工业生产中不可或缺的精准测量技术支撑。该技术以激光为核心载体,通过系统解析波的干涉规律,在跨学科领域实现了测量精度与应用范围的双重突破,成为推动科技进步的关键基础性工具。
2025-11-17
-
什么是柱镜光栅?微米级光学技术引领视觉领域革新
当裸眼3D影像突破平面束缚,当立体成像技术赋能产品包装升级,当光学隐身从科幻概念走向技术实践,柱镜光栅这一核心光学材料正凭借其独特的技术特性,在多个领域推动视觉体验与应用场景的深度变革。作为由微米级圆柱状凸透镜阵列构成的功能性光学材料,柱镜光栅以精准调控光线传播路径的核心能力,成为连接微观结构与宏观视觉应用的关键桥梁。
2025-11-17
-
突破性进展:阿秒涡旋脉冲串成功实现,拓展超快光-物质相互作用研究新维度
在超快光学领域,阿秒脉冲技术已成为观察原子、离子、分子等微观体系中超快电子动力学的重要手段,而轨道角动量这一关键自由度的引入,为该技术的创新发展提供了全新方向。近日,西班牙萨拉曼卡大学AlbadelasHeras教授、美国科罗拉多矿业学院DavidSchmidt教授领衔的联合研究团队,在国际权威期刊《Optica》(Vol.11,No.8)发表重磅研究成果,成功研发出阿秒涡旋脉冲串这一新型超快结构化光场。该成果通过创新性技术方案突破传统瓶颈,为化学、生物、凝聚态物理及磁学等多学科前沿研究提供了具备高时间分辨率与多维调控能力的独特工具。
2025-11-17
-
清华大学提出神经光瞳工程傅里叶叠层成像技术实现大视场高分辨率显微成像突破
在科研与医疗领域,显微镜的大视场观测与高分辨率成像需求长期存在相互制约的技术矛盾。当观测视场扩大时,边缘区域易出现图像失真、细节模糊等问题,严重影响后续分析与应用。清华大学曹良才课题组提出的神经光瞳工程傅里叶叠层成像(NePEFPM)新方法,成功破解这一技术瓶颈,为大视场高分辨率显微成像提供了创新性解决方案。相关研究成果发表于国际权威期刊《Optica》。
2025-11-17
