高功率光纤激光的现状与趋势
高功率光纤激光技术在21世纪以来取得了飞速发展,成为激光与光电子学领域的研究热点和行业应用的前沿。本文将深入探讨高功率光纤激光的现状与未来发展趋势。
高功率光纤激光的现状
功率指标的“滞涨”现象
从功率指标来看,部分高功率光纤激光数据似乎出现了一定程度的“滞涨”。例如,1万瓦级单模掺镱光纤激光在2009年就已实现,1千瓦级掺铥光纤激光在2010年实现,300瓦级铒镱共掺光纤激光在2007年实现,2018年实现了600瓦级多模激光。这些数据表明,单纯从功率指标上看,技术水平提升并不明显。
不同视角下的发展
1.线宽视角:按照输出线宽分类,高功率光纤激光可分为单频激光、窄线宽激光、常规线宽激光、宽谱激光和超宽谱激光等五种类型。与10年前相比,单频光纤激光从300瓦级提升至1千瓦级,窄线宽光纤激光从2千瓦级提升至7千瓦级,宽谱激光从千瓦级提升至6千瓦级,超宽谱激光从400瓦级提升至1千瓦级,呈现出对称性发展。
2.偏振角度:2017年,作者所在课题组对不同类型的线偏振光纤激光最高输出功率进行初步统计,发现很多类型的线偏振激光与对应的随机偏振激光的最高输出功率比值约为1:2或者1:3。当前,除常规线宽激光类型外,其余类型的线偏振激光与随机偏振激光最高输出功率基本一致,表明线偏振高功率激光取得了高速发展。
3.功率定标放大潜力:科研人员通过掺镱光纤、多组分光纤、掺磷光纤等技术,将量子亏损降低至1%左右,输出功率从毫瓦级提升至千瓦级,为提升单束激光的输出功率提供了新思路。
高功率光纤激光的发展趋势
科学边界的探索
1.极限波长:在掺杂光纤的发射谱范围内实现高功率激光输出是典型场景,但在“非舒适区”实现高功率输出是研究人员追求的目标。例如,IPGPhotonics公司2020年报道在1007nm、1010nm和1018nm中心波长分别实现0.75kW、0.90kW、1.33kW全光纤结构单模高功率输出。
2.极短脉冲:科研人员在不断探索高功率超短脉冲的脉宽极限。例如,MaxBorn研究所等单位联合课题组2019年报道实现10fs级脉宽、300W级高平均功率光纤激光输出。
关键技术的突破
1.极长传输:受非线性效应等因素影响,高功率光纤激光的传输难度较大。近年来,研究人员在微结构光纤等关键技术上取得重要突破,实现基于反谐振光纤的千瓦单模激光千米传输等代表性结果,为长距离能量输运等奠定了技术基础。
2.极多功能:随着光纤制备和光纤器件的创新改进、光电子等技术的广泛应用,激光时空特性的编辑能力逐步提升,激光器的功能日益多元,单机多用的能力逐步呈现。
自身性能的提升
1.极其紧凑:研究人员高度关注激光器体积、重量、稳定度等性能的提升。例如,采用相变储能和相变制冷组合的温控方式,对激光器进行光学、电学和温控一体化设计,使激光器质量减小超过60%,体积减小近90%。
2.极为可靠:科研人员不断拓宽光纤激光的温度范围,使其能在极端温度条件下正常工作。例如,已有在零下20到零上50均能正常工作的高功率掺铥光纤激光,在室温、极端温度(零下40或零上50)和振动(加速度为1.5g)环境下能保持快速锁模自启动和重复频率锁定功能的皮秒脉冲光纤激光器的报道。
应用范围的拓展
1.极端环境:科研人员不断拓宽光纤激光的温度范围,使其能在极端温度条件下正常工作。例如,已有在零下20到零上50均能正常工作的高功率掺铥光纤激光,在室温、极端温度(零下40或零上50)和振动(加速度为1.5g)环境下能保持快速锁模自启动和重复频率锁定功能的皮秒脉冲光纤激光器的报道。
2.极高功率:面向100mm以上厚板切割等应用需求,研究人员通过光束合成的方式快速提高光纤激光系统的输出功率。在2023年6月到9月这短短3个月时间内,已经有4家单位研发了输出功率超过150kW的激光系统,最高输出功率已经超过200kW。
高功率光纤激光技术正处于高速发展的状态,未来将继续在科学边界探索、关键技术突破、自身性能提升和应用范围拓展等方面取得重要进展。要深入推进和实现相关目标,需要基础理论、激光加工、光纤器件、设计软件、仪器设备、合成技术等多方面继续取得突破。
-
飞秒激光技术:引领电镜载网加工进入高精度高效时代
在微纳尺度科学研究与工业检测领域,电子显微镜(以下简称“电镜”)是揭示物质微观结构、探究材料性能机理的核心观测工具。而电镜载网作为支撑与固定待测样品的关键组件,其加工质量不仅直接决定样品固定的稳定性,更对薄膜沉积效果、器件结构分析精度及最终电镜成像质量产生关键性影响。因此,研发适配微纳领域需求的载网加工技术,已成为提升电镜应用效能的重要环节。
2025-09-30
-
光的折射与光速变化机制探析
将直筷斜插入盛水容器中,肉眼可观察到筷子在水面处呈现“弯折”形态;夏季观察游泳池时,主观感知的池底深度显著浅于实际深度——此类日常现象的本质,均是光在不同介质界面发生折射的结果。在物理学范畴中,折射现象的核心特征之一是光的传播速度发生改变。然而,“光以光速传播”是大众熟知的常识,为何光在折射过程中速度会出现变化?这一问题需从光的本质属性、介质与光的相互作用等角度展开严谨分析。
2025-09-30
-
纳米尺度光与物质强耦合新突破:定向极化激元技术开辟精准调控研究新范式
2025年9月22日,国际权威期刊《NaturePhotonics》发表了一项具有里程碑意义的研究成果:由西班牙奥维耶多大学PabloAlonso-González教授与多诺斯蒂亚国际物理中心AlexeyNikitin教授联合领衔的研究团队,首次通过实验实现了纳米尺度下传播型极化激元与分子振动的定向振动强耦合(directionalvibrationalstrongcoupling,VSC)。该突破不仅为极化激元化学领域拓展了全新研究维度,更推动“光与物质相互作用的按需调控”从理论构想迈向实验验证阶段。
2025-09-30
-
从传统工艺到原子级精控了解超光滑镜片加工技术的六大核心路径
超光滑镜片作为光刻机、空间望远镜、激光雷达等高端光学系统的核心元件,其表面微观粗糙度需达到原子级水平(通常要求均方根粗糙度RMS<0.5nm),以最大限度降低光散射损耗,保障系统光学性能。前文已围绕超光滑镜片的定义、潜在危害及检测方法展开探讨,本文将系统梳理其加工技术体系,从奠定行业基础的传统工艺,到支撑当前高精度需求的先进技术,全面解析实现原子级光滑表面的六大核心路径。
2025-09-30