德国启动SHARP项目,为激光聚变开发高性能镜子
近日,德国启动了一项名为SHARP(即可扩展高功率拍瓦反射镜)的研究项目,旨在开发用于激光聚变应用的新型高性能镜子。该项目为期三年,总预算为1040万欧元,其中840万欧元来自德国联邦教育和研究部。
激光聚变作为一种极具潜力的能源技术,有望为全球提供清洁、可持续的能源。然而,目前激光聚变反应堆面临着诸多技术挑战,其中之一就是缺乏能够在极端条件下长期稳定运行的高性能镜子系统。现有的激光镜系统研究大多未考虑激光辐射的热效应,而未来激光驱动的聚变发电厂的连续运行对这一点有着极高的要求。
为满足未来激光聚变反应堆的需求,SHARP项目致力于开发具有高反射率、热稳定性的镜子系统。该项目将重点探索大面积和内部冷却的高性能光学镜子系统,以应对激光辐射带来的热问题。具体而言,项目将围绕以下几个方面展开:
1.超抛光与制造技术:开发超抛光、弯曲、大面积光学器件的新型制造技术,提升镜子的光学质量。
2.清洁策略:研究去除不完美基板区域的方法和所谓的“零缺陷”清洁策略,确保镜子表面的纯净度。
3.热管理与冷却:在玻璃基板中设计新型集成冷却结构,以实现主动冷却,减少热机械效应的影响。
SHARP联盟积极协调各方将紧密合作,共同攻克技术难题。
该项目的成果不仅将为激光聚变发电厂的商业化铺平道路,还将对其他未来市场产生深远影响。例如,在高功率激光应用、激光加工材料和空间通信等领域,SHARP项目所开发的高性能镜子技术有望发挥重要作用,特别是在下一代极紫外光刻基板和涂层方面。
随着SHARP项目的推进,我们期待看到高性能镜子技术取得突破,为激光聚变能源的实现提供有力支持。
-
飞秒激光技术:引领电镜载网加工进入高精度高效时代
在微纳尺度科学研究与工业检测领域,电子显微镜(以下简称“电镜”)是揭示物质微观结构、探究材料性能机理的核心观测工具。而电镜载网作为支撑与固定待测样品的关键组件,其加工质量不仅直接决定样品固定的稳定性,更对薄膜沉积效果、器件结构分析精度及最终电镜成像质量产生关键性影响。因此,研发适配微纳领域需求的载网加工技术,已成为提升电镜应用效能的重要环节。
2025-09-30
-
光的折射与光速变化机制探析
将直筷斜插入盛水容器中,肉眼可观察到筷子在水面处呈现“弯折”形态;夏季观察游泳池时,主观感知的池底深度显著浅于实际深度——此类日常现象的本质,均是光在不同介质界面发生折射的结果。在物理学范畴中,折射现象的核心特征之一是光的传播速度发生改变。然而,“光以光速传播”是大众熟知的常识,为何光在折射过程中速度会出现变化?这一问题需从光的本质属性、介质与光的相互作用等角度展开严谨分析。
2025-09-30
-
纳米尺度光与物质强耦合新突破:定向极化激元技术开辟精准调控研究新范式
2025年9月22日,国际权威期刊《NaturePhotonics》发表了一项具有里程碑意义的研究成果:由西班牙奥维耶多大学PabloAlonso-González教授与多诺斯蒂亚国际物理中心AlexeyNikitin教授联合领衔的研究团队,首次通过实验实现了纳米尺度下传播型极化激元与分子振动的定向振动强耦合(directionalvibrationalstrongcoupling,VSC)。该突破不仅为极化激元化学领域拓展了全新研究维度,更推动“光与物质相互作用的按需调控”从理论构想迈向实验验证阶段。
2025-09-30
-
从传统工艺到原子级精控了解超光滑镜片加工技术的六大核心路径
超光滑镜片作为光刻机、空间望远镜、激光雷达等高端光学系统的核心元件,其表面微观粗糙度需达到原子级水平(通常要求均方根粗糙度RMS<0.5nm),以最大限度降低光散射损耗,保障系统光学性能。前文已围绕超光滑镜片的定义、潜在危害及检测方法展开探讨,本文将系统梳理其加工技术体系,从奠定行业基础的传统工艺,到支撑当前高精度需求的先进技术,全面解析实现原子级光滑表面的六大核心路径。
2025-09-30