新型多能级衍射平面透镜问世,消色差聚焦性能获验证
在光学成像领域,镜头的发展一直备受关注。几个世纪以来,传统镜头依靠有曲率的玻璃或塑料来聚焦图像,其原理虽经典,但随着科技发展,弊端逐渐凸显——光焦度增加时,镜头会变得更重更厚。对于普通相机和望远镜而言,镜头体积问题或许尚可接受,可对于需要聚焦遥远星系光线的大型望远镜,大而重的镜头不仅增加成本,且效率低下,这使得天文台和太空望远镜更多地依赖大型曲面反射镜来聚焦光线。

长期以来,研究人员不断探索让镜头更轻且不牺牲性能的方法。尽管出现过一些小型替代品,却因生产难度大、成本高、产能有限等问题,难以广泛应用。就在这一困境中,犹他大学工程学教授RajeshMenon和普莱斯工程学院的同事们取得了重大突破,相关研究成果发表在《Applied Physics Letters》上。
他们开发出一种新型聚合物平面透镜——多能级衍射透镜(MDL)。这款透镜直径达100mm,厚度却仅有2.4μm,焦距为200mm,并且针对400-800nm波长范围进行了优化。MDL运用逆向设计方法和灰度光刻技术,成功实现消色差聚焦,这一性能通过高光谱点扩散函数(PSF)得到验证。
在成像实验中,MDL表现出色,能够分辨高达181lp/mm的空间频率。研究人员用它捕获月球、太阳和遥远地球场景的高质量全彩图像,彩色增强的月球图像清晰揭示了关键地质特征,太阳成像则精准确定了可见的太阳黑子。不仅如此,MDL与折射消色差透镜集成形成混合望远镜,显著减轻了机载和天基成像应用的重量,展现出在天文摄影和其他远程成像任务中,作为传统折射系统轻型替代品的巨大潜力。
研究的关键在于,团队成功在衬底上创建微观小的同心环。与仅针对单个波长调谐的FZP不同,MDL平面透镜压痕的大小和间距经过巧妙设计,使光的衍射波长足够接近,从而产生全彩、清晰的图像。不过,模拟这些镜头在从可见光到近红外的大带宽上的性能,面临着复杂计算问题,需要处理庞大的数据集。优化镜头微观结构设计后,制造过程对过程控制和环境稳定性要求极为严格。
电气与计算机工程系的研究助理教授ApratimMajumder领导了这项研究,研究得到了国防高级研究计划局(DARPA)、海军研究办公室和美国宇航局的支持。这一成果对天文学以及多个行业意义重大,有望为光学成像领域带来全新变革,推动相关技术迈向新高度。
-
半导体抛光设备自动化应用及工艺质量管控要点探析
在半导体器件规模化量产进程中,抛光工艺作为保障晶圆加工精度与表面质量的核心环节,其设备自动化水平、工艺参数调控能力、检测体系完善度及异常处置效率,直接决定生产效率、工艺稳定性与产品良率。本文从抛光设备自动化配置要求、核心工艺参数调控、关键检测指标界定及常见工艺异常处理四个维度,系统阐述半导体抛光工艺的质量管控核心要点,为半导体抛光制程的标准化、精细化实施提供参考。
2026-02-12
-
硅晶圆激光切割核心技术深度解析:原理、工艺与质量把控
在半导体制造产业链中,硅晶圆切割是芯片成型的关键工序,其加工精度与效率直接影响芯片良品率和产业发展节奏。随着微电子器件向微型化、薄型化升级,传统切割方式的弊端逐渐显现,激光切割凭借高精度、低损伤的技术优势成为行业主流。本文从激光切割系统的硬件构成出发,深入拆解隐形切割与消融切割两大核心工艺,解析光斑、焦点的精度控制逻辑,并探讨切割质量的评价维度与效率平衡策略,系统梳理硅晶圆激光切割的核心技术体系
2026-02-12
-
无掩模激光直写技术研究概述
无掩模激光直写技术作为微纳加工领域的先进光刻技术,摒弃了传统光刻工艺对掩模版的依赖,凭借直接写入的核心特性,在复杂微纳结构制备、高精度图案加工中展现出独特优势,成为微纳加工领域的重要技术方向。本文从工作原理与流程、技术特性、现存挑战、分辨率与对准参数、核心设备及厂务动力配套要求等方面,对该技术进行全面梳理与阐述。
2026-02-12
-
SiC功率器件的高温时代:封装成为行业发展核心瓶颈
在半导体功率器件技术迭代进程中,碳化硅(SiC)凭借高温工作、高电流密度、高频开关的核心优势,成为推动功率半导体升级的关键方向,其普及大幅提升了器件的功率密度与工作效率,为功率半导体行业发展带来全新机遇。但与此同时,行业发展的核心瓶颈正悄然从芯片设计与制造环节,转移至封装层面。当SiC将功率器件的工作温度与功率密度不断推高,芯片本身已具备承受更高应力的能力,而封装环节的材料适配、热路径设计等问题却日益凸显,高温与快速功率循环叠加的工况下,焊料与热路径成为决定SiC功率模块寿命的核心因素,封装技术的发展水平,正成为制约SiC功率器件产业化落地与长期可靠应用的关键。
2026-02-12
