外国团队在CMOS试验原型生产线上实现电驱动砷化镓纳米脊激光二极管的单片制造
比利时微电子研究中心(imec)在硅光子学领域取得了重大突破,成功在其CMOS试验原型生产线上展示了在300毫米硅晶圆上单片制造的电驱动砷化镓(GaAs)多量子阱纳米脊激光二极管。这一成果不仅实现了室温连续波激光,还达到了低至5mA的阈值电流和超过1mW的输出功率,证明了在硅上直接外延生长高质量III-V材料的潜力。这一进展为开发用于数据通信、机器学习和人工智能应用的经济高效、高性能光学设备提供了一条新途径。
硅光子学是一项快速发展的技术,有望彻底改变通信、计算和感知世界的方式。然而,缺乏高度可扩展的原生互补金属氧化物半导体(CMOS)集成光源一直是其广泛应用的主要障碍。尽管在硅上混合和异质集成III-V族光源方面已取得显著进展,但通过直接外延生长III-V族材料实现单片集成,仍然是成本效益最高的片上光源解决方案。

一、研究成果
imec的研究团队采用了一种新的集成方法——纳米脊工程(Nano-RidgeEngineering,NRE),通过在硅晶圆表面构建纳米级高纵横比沟槽,选择性地生长出低缺陷密度的GaAs纳米脊结构。这些结构内嵌InGaAs量子阱,形成p-i-n二极管,能够实现高效的电流注入和光增益,从而实现了在室温下连续波工作的激光器。
研究结果显示,这种纳米脊激光器在1020nm波长下具有以下优异性能:
1.低阈值电流:实验中实现了最低仅为5毫安的阈值电流。
2.高输出功率:单片输出功率可超过1毫瓦。
3.窄激光线宽:激光线宽仅46MHz。
4.可靠性:在室温条件下,连续波激光器经过至少500小时的测试,其性能仅出现轻微衰减,表现出卓越的可靠性。
二、技术细节
III-V族材料和硅材料之间晶格参数和热膨胀系数的巨大不匹配不可避免地会引发晶体失配缺陷的形成,这些缺陷会降低激光器的性能和可靠性。imec通过选择性区域生长(SAG)与纵横比捕获(ART)相结合的方法,将失配位错限制在介电掩模蚀刻的狭窄沟槽内,显著减少了集成在硅上的III-V族材料的缺陷。
优化后的纳米脊结构的穿透位错密度通常远低于10^5cm^-2。imec利用III-V纳米脊工程概念,在标准300毫米硅晶圆上展示了首次全晶圆级制造电泵浦GaAs基激光器,完全在CMOS试验生产线内进行。利用低缺陷率GaAs纳米脊结构,激光器集成了InGaAs多量子阱作为光增益区,嵌入原位掺杂的p-i-n二极管中,并用磷化铟镓覆盖层钝化。通过电注入实现室温连续波操作是一项重大进步,克服了电流传输和接口工程方面的挑战。
“在大直径硅晶片上经济高效地集成高质量III-V增益材料是下一代硅光子学应用的关键推动因素,”imec硅光子学研究员、光学I/O行业附属研发项目主任JorisVanCampenhout表示。“这些令人兴奋的纳米脊激光器结果代表了使用直接外延生长进行单片III-V集成的重要里程碑。”
该项目是imec一项更大规模探索任务的一部分,旨在推动III-V集成工艺向更高的技术成熟度发展,短期内将采用倒装芯片和转印混合技术,长期内将采用异质晶圆和芯片键合技术,最终实现直接外延生长。
这一突破性的研究成果已发表在《自然》杂志上,为硅光子学的未来发展提供了新的方向和可能性。
-
什么是光学像差?光学像差的原理、分类与校正技术前沿
在光学系统的发展历程中,完美成像始终是科研工作者与工程技术人员追求的核心目标。然而,实际光学系统与理想高斯光学之间存在的固有差异——光学像差,成为阻碍这一目标实现的关键因素。作为光在真实介质中传播特性的直接体现,光学像差不仅深刻影响成像质量,其背后蕴含的物理机制与校正技术的演进,更构成了现代光学领域的重要研究脉络。
2025-12-30
-
各向异性材料中的双折射与偏振现象及应用
光学各向异性材料因原子排列的非对称性,展现出独特的双折射与偏振特性,成为现代光学技术中不可或缺的核心材料。本文系统阐述双折射与偏振的物理本质,以典型晶体为研究对象,深入分析其光学行为、波前传播规律,并介绍基于双折射效应的偏振器设计与应用,为相关领域的研究与工程实践提供理论参考。
2025-12-29
-
激光器的发展方向与未来应用前景探析
随着现代科技的迅猛发展,激光技术作为20世纪最重大的科学成就之一,已从实验室走向产业化,并深度融入工业制造、医疗健康、科学研究及日常生活等多个领域。基于工作物质的不同,激光器主要分为液体激光器、气体激光器、固体激光器和半导体激光器四大类,各类激光器凭借其独特优势,在不同应用场景中发挥着不可替代的作用。面向未来,激光器的发展正朝着“更大功率、更小体积、更高集成、更快脉冲、更多样化”的方向持续演进,展现出广阔的技术潜力与应用前景。
2025-12-29
-
基于单发色散扫描的超短激光脉冲测量技术取得新突破
2025年12月27日,一项关于超短激光脉冲测量的重要研究成果在光学领域引发广泛关注。由瑞典隆德大学与葡萄牙波尔图大学联合组成的研究团队,在原有“单发色散扫描”(Single-shotdispersionscan,d-scan)方法基础上,成功开发出一种更为紧凑、适用范围更广的新型测量技术,显著提升了对飞秒级激光脉冲时域特性的实时表征能力。
2025-12-29
