【光学资讯】543nm和602nm被动锁模全光纤绿/橙激光器中突发模式脉冲的产生
厦门大学罗正钱教授团队在可见光波段的锁模光纤激光器研究中取得了重要进展,成功实现了543nm和602nm被动锁模全光纤绿/橙激光器中的突发模式脉冲。该研究不仅推动了可见光波段锁模光纤激光器的技术发展,还为未来在生物医学成像、微机械加工等领域的应用提供了新的技术手段。
锁模光纤激光器在可见光波段(380-760nm)对于激光显示、光通信、生物医学、显微成像、医学治疗和科学研究等领域至关重要。尽管已有研究实现了可见光被动锁模光纤激光器,但全光纤配置的可见锁模光纤激光器主要局限于红色光谱带,限制了其在需要不同波长和小型化、紧凑性、稳定性要求高的应用场景中的应用。因此,探索可见光波长锁模全光纤激光器具有强烈的动力。

一、研究方法:
实验中使用了9字腔配置,包括光纤端面反射镜、增益光纤和光纤环形反射镜。460HP光纤环形镜不仅作为输出镜,还作为启动可见波长锁模的非线性光学环形镜。通过结合非线性光学环形镜和耗散四波混频效应辅助的腔内F-P滤波,实现了绿色和橙色被动锁模全光纤激光器中的突发模式脉冲。
二、实验装置
1.543nm激光器
1)泵浦源:使用商用450nmGaN激光二极管,输出功率为2W,通过一系列光学元件耦合到Ho3+:ZBLAN光纤中。
2)增益光纤:单包层Ho3+:ZBLAN光纤,纤芯直径7.5μm,数值孔径0.23μm。
3)过渡光纤:630HP光纤,纤芯直径3.5μm,数值孔径0.13,用于减少耦合损耗。
4)输出耦合器:使用630HP光纤的15:85光耦合器,反射率为51%,提取49%的腔内功率。
5)F-P滤波器:基于光纤-空气界面的菲涅耳反射,构建了一个自由光谱范围约为0.84pm(543nm处为854.40MHz)的弱F-P滤波器。
2.602nm激光器
1)泵浦源:使用商用443nmGaN激光二极管,输出功率为2W,通过一系列光学元件耦合到Pr3+/Yb3+:ZBLAN光纤中。
2)增益光纤:单包层Pr3+/Yb3+:ZBLAN光纤,纤芯直径2.8μm,数值孔径0.23μm。
3)输出耦合器:使用10:90耦合器的光纤环路反射镜,提供36%的反射率,提取64%的腔内功率。
4)F-P滤波器:基于光纤-空气界面的菲涅耳反射,构建了一个自由光谱范围约为0.76GHz的弱F-P滤波器。
三、实验结果
1.543nm激光器
连续波绿色激光:阈值约为260mW,当泵浦功率超过310mW时,突发模式锁模运行并自启动。
光谱特性:在335mW泵浦功率下,绿光锁模全光纤激光器的光谱带宽为0.13nm,中心波长固定为543.3nm。
2.脉冲特性:
脉冲串间脉冲:脉冲间隔为264.6ns,与腔的往返时间相匹配。脉冲串内脉冲:重复率为850.05MHz,脉冲持续时间为87ps。
泵浦功率影响:随着泵浦功率的增加,长脉冲串的脉冲持续时间从22.2ns逐渐增加到26.1ns,脉冲内脉冲持续时间从87ps增加到158ps。
3.602nm激光器
连续波橙色激光:当泵浦功率高于100mW时,激光器在602nm的连续波状态下工作,当泵浦功率达到180mW时,实现稳定的突发模式锁模。
光谱特性:锁模后的光谱带宽为0.21nm,基频为5.662MHz。
脉冲特性:
脉冲串间脉冲:脉冲间隔为175.3ns,与9字腔的基本重复率一致。
脉冲串内脉冲:重复率为758.70MHz,脉冲持续时间为80ps(受限于示波器带宽)。
泵浦功率影响:随着泵浦功率的增加,突发间脉冲的脉冲持续时间从11.6ns增加到19.8ns。
四、关键结论
突发模式脉冲:实验成功产生了543nm和602nm的突发模式脉冲,这些脉冲是一组以更低的重复率重复的高重复率脉冲,对于微机械加工和生物医学领域有广泛应用。
高重复率脉冲:通过结合非线性环形径和F-P滤波辅助的耗散四波混频效应,实现了可见光谱区高重复率脉冲的产生。
小型化和高性能:该系统不仅是向小型化可见光超快光纤激光器迈出的重要一步,还通过超快激光功率放大和色散管理,有望提高激光器在输出功率、脉冲持续时间和峰值功率方面的性能,未来可能应用于材料加工和生物医学领域。
这项研究不仅推动了可见光波段锁模光纤激光器的技术发展,还为未来在生物医学成像、微机械加工等领域的应用提供了新的技术手段。通过实现小型化和高性能的激光器,可以满足不同应用场景对激光器性能和尺寸的要求。
-
热红外检测核心技术解析:热释电与热电堆的原理及应用差异
在红外热探测、气体分析、激光功率监测等现代工业与科研领域,热-电转换技术是实现非接触式温度感知与能量检测的核心。其中,热释电效应与热电堆传感器作为两大主流热红外检测机制,凭借各自独特的物理特性,支撑着不同场景下的精准测量需求。本文将从原理本质、核心特性、应用场景等维度,深入解析两者的技术差异与选型逻辑。
2025-12-08
-
如何基于技术参数与规范科学选型光模块?
在现代通信与数据传输系统中,光模块作为电信号与光信号转换的关键核心组件,承担着数据发送与接收的重要功能。其一端连接设备电路板以获取电信号,另一端接入光纤线缆实现光信号传输,是保障通信系统高效运行的基础单元。类似于TypeC至USB接口适配器的信号转换作用,光模块的性能表现直接取决于各项技术参数的协同匹配。无论是数据中心高密度互联、5G网络前传部署,还是长距离城域传输系统构建,光模块的科学选型均需以系统掌握其技术参数为前提。
2025-12-05
-
重大突破!清华大学段路明团队实现全功能双类型离子阱量子网络节点,为量子互联网发展奠定重要基础
在量子互联网向规模化、实用化推进的进程中,量子网络节点的通信功能与存储功能兼容性问题长期构成关键技术瓶颈。近日,清华大学段路明院士团队在国际权威期刊《Science Advances》发表重磅研究成果,成功构建全球首个集成“物质光子纠缠产生”“无串扰量子存储”“比特间纠缠门”三大核心功能的双类型离子阱量子网络节点,从根本上解决了传统方案中通信与存储相互干扰的难题,为基于囚禁离子体系的大规模量子网络构建提供了切实可行的技术路径,标志着量子网络领域迎来里程碑式进展。
2025-12-05
-
什么是光声光谱技术?光声融合的前沿检测与应用研究
光作为人类感知世界的重要载体,声作为信息传递的关键媒介,二者的跨界融合催生了光声光谱(PhotoacousticSpectroscopy,简称PAS)这一创新性技术。该技术突破传统检测范式,通过光声信号的转化实现物质特性的精准分析,兼具物理学理论深度与多领域应用价值,已成为科研与产业领域的重要检测手段。
2025-12-05
