超声振动辅助激光熔覆技术:高端制造的新趋势
在现代制造业中,提升金属零部件的性能和延长其使用寿命是永恒的追求。激光熔覆技术作为一种表面强化手段,因其能够显著改善零部件的耐磨性、抗腐蚀性和疲劳强度等性能而备受关注。然而,激光熔覆过程中产生的残余应力和应变集中问题,一直是制约其在高端装备关键部件应用的瓶颈。近期,一项创新技术——超声振动辅助激光熔覆技术,为解决这一问题提供了新的思路。
一.激光熔覆技术及其挑战
激光熔覆技术通过快速熔化和凝固零部件表面,改变表层微观组织结构,从而提升其性能。但这一过程中的剧烈加热和冷却导致了复杂的热应力场,容易产生应变集中和残余应力,影响产品的力学性能和可靠性。
二.超声振动辅助技术的研究背景
为了降低激光熔覆过程中的残余应力,研究人员开始探索基于前后处理与多技术协同的方法。超声能场作为一种外加能量场,已被证明能有效加强熔池流动、降低温度梯度,并均匀组织分布,从而影响残余应力分布。
三.数字图像相关法(DIC)技术的应用
DIC技术作为一种非接触、全场变形的光学测量方法,能够实时测量材料或结构的应变分布,适用于复杂工况下激光熔覆过程中的动态应变捕捉。本文基于DIC技术,提出了适用于激光熔覆过程熔池附近区域应变观测的散斑制作方法及质量评价指标,实现了激光熔覆过程中的应变观测。
四.超声振动辅助激光熔覆试验平台
研究人员搭建了超声振动辅助激光熔覆试验平台,对比分析了超声对应变分布的作用效果。结果表明,超声振动能显著均匀化应变集中区域并减小应变峰值,且这种作用效果随超声功率的增加而愈加显著。
五.超声振动对熔覆过程的影响
超声振动不仅影响了应变分布,还在熔池液态金属凝固过程中起到了作用。超声空化作用引起局部过冷,抑制了元素偏析,破碎了枝晶和网状析出相,使得富集元素更均匀地分布,从而减少析出相的形成并改善应力分布。
超声振动辅助激光熔覆技术的研究为控制应变分布提供了更有效的方法,有望提升构件的力学性能。随着技术的不断发展,结合原位监测技术的多技术复合激光熔覆有望与智能化技术相结合,实现实时监测和智能工艺优化,推动制造业的创新和可持续发展。
-
飞秒激光加工新突破:波长调控技术革新表面处理精度
激光波长对材料表面粗糙度的精准调控机制,为高精度微纳加工开辟了新路径。来自能量束加工及应用技术领域的研究团队,通过多波长协同工艺(DWA技术),成功实现了表面光洁度与加工效率的双重优化,相关成果已引发航空航天、半导体等高端制造领域关注。
2025-06-30
-
光学生物传感器技术发展:从指纹识别到柔性生物监测系统的演进
光学生物传感技术作为融合光学工程、生物医学与信息技术的交叉领域,近年来在生物特征识别与医疗监测领域取得显著进展。该技术通过解析光与生物组织的相互作用规律,实现对人体生理信息的非侵入式获取。从早期的屏幕指纹识别到当前正在研发的柔性电子皮肤系统,光学生物传感器正经历从刚性平面器件到柔性立体感知系统的技术跨越,为精准医疗与健康管理提供全新的技术路径。
2025-06-30
-
漫反射技术颠覆多个领域!从实验室走向产业应用的光谱革命
当一束红外光照射到粗糙的催化剂粉末上,光的轨迹会在颗粒间辗转反射,最终携带物质的"分子密码"被检测器捕获——这种看似普通的光学现象,如今已发展成为横跨催化、食品、环境等领域的革命性检测技术。漫反射光谱技术正以其无损、快速的特性,重塑现代分析科学的应用图景。
2025-06-27
-
为什么液态镜头是未来光学行业的革新力量?
液态镜头的技术发端植根于生物视觉系统的精密构造。人类眼球通过睫状肌对晶状体曲率的动态调节实现自动对焦,这一生物力学机制为光学工程领域提供了突破性的技术范式。液态镜头通过模拟生物视觉原理,借助对液体物理参数(如折射率、表面张力、接触角等)的精准调控,实现无机械移动部件的焦距转换。这种仿生设计从根本上突破了传统机械式光学系统的体积约束与机械损耗瓶颈,犹如将生物界历经亿万年进化的视觉智慧转化为现代光学技术的创新动能。
2025-06-27