超声振动辅助激光熔覆技术:高端制造的新趋势
在现代制造业中,提升金属零部件的性能和延长其使用寿命是永恒的追求。激光熔覆技术作为一种表面强化手段,因其能够显著改善零部件的耐磨性、抗腐蚀性和疲劳强度等性能而备受关注。然而,激光熔覆过程中产生的残余应力和应变集中问题,一直是制约其在高端装备关键部件应用的瓶颈。近期,一项创新技术——超声振动辅助激光熔覆技术,为解决这一问题提供了新的思路。
一.激光熔覆技术及其挑战
激光熔覆技术通过快速熔化和凝固零部件表面,改变表层微观组织结构,从而提升其性能。但这一过程中的剧烈加热和冷却导致了复杂的热应力场,容易产生应变集中和残余应力,影响产品的力学性能和可靠性。
二.超声振动辅助技术的研究背景
为了降低激光熔覆过程中的残余应力,研究人员开始探索基于前后处理与多技术协同的方法。超声能场作为一种外加能量场,已被证明能有效加强熔池流动、降低温度梯度,并均匀组织分布,从而影响残余应力分布。
三.数字图像相关法(DIC)技术的应用
DIC技术作为一种非接触、全场变形的光学测量方法,能够实时测量材料或结构的应变分布,适用于复杂工况下激光熔覆过程中的动态应变捕捉。本文基于DIC技术,提出了适用于激光熔覆过程熔池附近区域应变观测的散斑制作方法及质量评价指标,实现了激光熔覆过程中的应变观测。
四.超声振动辅助激光熔覆试验平台
研究人员搭建了超声振动辅助激光熔覆试验平台,对比分析了超声对应变分布的作用效果。结果表明,超声振动能显著均匀化应变集中区域并减小应变峰值,且这种作用效果随超声功率的增加而愈加显著。
五.超声振动对熔覆过程的影响
超声振动不仅影响了应变分布,还在熔池液态金属凝固过程中起到了作用。超声空化作用引起局部过冷,抑制了元素偏析,破碎了枝晶和网状析出相,使得富集元素更均匀地分布,从而减少析出相的形成并改善应力分布。
超声振动辅助激光熔覆技术的研究为控制应变分布提供了更有效的方法,有望提升构件的力学性能。随着技术的不断发展,结合原位监测技术的多技术复合激光熔覆有望与智能化技术相结合,实现实时监测和智能工艺优化,推动制造业的创新和可持续发展。
-
离子阱量子比特的激光操控机制的原理、优势与关键技术
捕获离子技术作为量子计算领域的核心实现路径之一,通过电磁场囚禁离子、激光调控量子态,在相干性、操控精度与可扩展性方面展现出显著优势,已成为当前量子计算技术竞争的关键方向。该技术以线性保罗阱(PaulTrap)为核心装置,结合激光冷却与精准调控手段,实现对离子量子态的稳定编码、操控与读取,为构建高性能量子计算系统提供了重要技术支撑。本文将从技术原理、核心优势、关键装备等维度,系统解析离子阱量子比特的激光操控机制。
2025-10-14
-
高精度光学系统的“隐形干扰源”:应力双折射对技术突破的制约机制探析
在半导体制造领域的光刻机车间,工程师曾面临一项棘手难题:即便光学镜片的面型精度、表面光洁度均满足设计标准,光刻芯片的刻线边缘仍频繁出现模糊“毛边”,直接影响芯片良率;在天文观测领域,科研人员发现,排除大气扰动等外部因素后,望远镜捕捉的天体图像仍存在细微“重影”,难以达到衍射极限的观测精度。这些看似孤立的技术故障,均指向同一易被忽视的关键因素——应力双折射。
2025-10-14
-
塑料镜片注塑成型工艺:从原材料到成品的精密制造体系解析
在消费电子产业高速迭代的背景下,塑料镜片凭借轻量化、抗冲击性强、可批量成型等核心优势,已广泛应用于智能终端显示组件、多摄镜头模组及虚拟现实(VR)/增强现实(AR)光学系统,逐步替代传统玻璃镜片成为主流光学基材。然而,塑料镜片的高精度成型并非简单的“熔融注塑冷却”过程,而是围绕“材料特性、模具设计、工艺参数、后处理与检测”四大核心环节构建的精密制造体系。本文将从工业生产视角出发,系统拆解塑料镜片注塑成型的全流程技术逻辑,为行业从业者提供专业参考。
2025-10-13
-
光学材料选型避坑:一文分清光学玻璃与光学晶体
光学设备研发、镜头设计或激光系统搭建中,不少人常把光学玻璃和光学晶体混为一谈——明明想选低成本的普通镜头材料,却误看了高价的晶体;或是需要深紫外透射功能时,还在纠结玻璃的参数,最终导致项目延期或性能不达标。其实这两种材料并非“近亲”,而是基于微观结构划分的独立类别,搞懂它们的核心差异,才能精准选型。
2025-10-13