【光学前沿资讯】基于两个级联子环的1.6微米单频掺铒光纤激光器:开辟L波段激光器新纪元
在现代光学技术中,单频光纤激光器因其窄线宽、优异的相干性和高光信噪比而在多个领域扮演着重要角色。随着光通信传输容量需求的日益增长,激光波长的扩展至1.6微米的L波段变得尤为迫切。L波段不仅覆盖了眼睛安全的波段,还因其对烟雾的高穿透能力而在大气遥感方面展现出巨大潜力。近期,一项突破性的研究成果为这一领域带来了新的曙光,翟雅琦等人成功实现了一种工作在1.6微米波长的稳定窄线宽单频掺铒光纤激光器。

技术亮点
该激光器的核心在于其创新的腔体设计,通过在主环腔内集成法布里-珀罗光纤布拉格光栅和两个级联的子环来实现单频运转。这种设计不仅提高了激光器的稳定性,还显著提升了光信噪比至73分贝以上,这对于保证信号的清晰传输至关重要。
实验装置与原理
实验中,研究人员采用了976纳米激光二极管作为泵浦源,并通过976/1600纳米波分多路复用器将其耦合到腔中。使用的1.8米商用掺铒光纤在1530纳米处的芯吸收系数为110分贝/米,确保了高效的光-光转换效率。环行器作为隔离器,防止了空间烧孔的影响,而光纤光栅的精确控制则保证了特定波长的光信号能够被有效地反射和传输。
滤波器设计与性能
为了保证单纵模运行,研究人员增加了两个50:50的光耦合器作为高精度滤波器,组成两个级联子环。这种设计不仅增加了纵模间距,减少了跳模现象,还通过游标效应确保了只有满足各子环共振条件的纵模才能振荡。实验结果表明,这种配置确保了激光器在高品质因子下的单频运转。
稳定性与线宽测量
在60分钟的连续监测中,激光器的中心波长稳定在1600.06纳米,波长波动小于光谱分析仪的极限分辨率0.02纳米,输出功率变化小于0.169分贝。这些数据证明了激光器的卓越稳定性。此外,通过自制的短延迟自外差干涉仪测量,激光器的线宽约为480赫兹,这一结果在相干激光雷达和远距离相干光通信领域具有重要意义。
这项研究不仅为实现L波段单频光纤激光器提供了新的实验思路,而且其低成本和高滤波能力的设计为未来的光通信和遥感技术的发展提供了强有力的技术支持。随着这项技术的进一步成熟和应用,我们有望在不久的将来看到1.6微米波段激光器在多个领域的广泛应用,从而开启L波段激光设备的新纪元。
-
干涉测量术的原理、应用及技术演进研究
从宇宙天体的精细化观测到纳米级工业制造的质量管控,干涉测量术基于波的干涉效应,已发展为现代科学研究与工业生产中不可或缺的精准测量技术支撑。该技术以激光为核心载体,通过系统解析波的干涉规律,在跨学科领域实现了测量精度与应用范围的双重突破,成为推动科技进步的关键基础性工具。
2025-11-17
-
什么是柱镜光栅?微米级光学技术引领视觉领域革新
当裸眼3D影像突破平面束缚,当立体成像技术赋能产品包装升级,当光学隐身从科幻概念走向技术实践,柱镜光栅这一核心光学材料正凭借其独特的技术特性,在多个领域推动视觉体验与应用场景的深度变革。作为由微米级圆柱状凸透镜阵列构成的功能性光学材料,柱镜光栅以精准调控光线传播路径的核心能力,成为连接微观结构与宏观视觉应用的关键桥梁。
2025-11-17
-
突破性进展:阿秒涡旋脉冲串成功实现,拓展超快光-物质相互作用研究新维度
在超快光学领域,阿秒脉冲技术已成为观察原子、离子、分子等微观体系中超快电子动力学的重要手段,而轨道角动量这一关键自由度的引入,为该技术的创新发展提供了全新方向。近日,西班牙萨拉曼卡大学AlbadelasHeras教授、美国科罗拉多矿业学院DavidSchmidt教授领衔的联合研究团队,在国际权威期刊《Optica》(Vol.11,No.8)发表重磅研究成果,成功研发出阿秒涡旋脉冲串这一新型超快结构化光场。该成果通过创新性技术方案突破传统瓶颈,为化学、生物、凝聚态物理及磁学等多学科前沿研究提供了具备高时间分辨率与多维调控能力的独特工具。
2025-11-17
-
清华大学提出神经光瞳工程傅里叶叠层成像技术实现大视场高分辨率显微成像突破
在科研与医疗领域,显微镜的大视场观测与高分辨率成像需求长期存在相互制约的技术矛盾。当观测视场扩大时,边缘区域易出现图像失真、细节模糊等问题,严重影响后续分析与应用。清华大学曹良才课题组提出的神经光瞳工程傅里叶叠层成像(NePEFPM)新方法,成功破解这一技术瓶颈,为大视场高分辨率显微成像提供了创新性解决方案。相关研究成果发表于国际权威期刊《Optica》。
2025-11-17
