【光学前沿资讯】基于两个级联子环的1.6微米单频掺铒光纤激光器:开辟L波段激光器新纪元
在现代光学技术中,单频光纤激光器因其窄线宽、优异的相干性和高光信噪比而在多个领域扮演着重要角色。随着光通信传输容量需求的日益增长,激光波长的扩展至1.6微米的L波段变得尤为迫切。L波段不仅覆盖了眼睛安全的波段,还因其对烟雾的高穿透能力而在大气遥感方面展现出巨大潜力。近期,一项突破性的研究成果为这一领域带来了新的曙光,翟雅琦等人成功实现了一种工作在1.6微米波长的稳定窄线宽单频掺铒光纤激光器。

技术亮点
该激光器的核心在于其创新的腔体设计,通过在主环腔内集成法布里-珀罗光纤布拉格光栅和两个级联的子环来实现单频运转。这种设计不仅提高了激光器的稳定性,还显著提升了光信噪比至73分贝以上,这对于保证信号的清晰传输至关重要。
实验装置与原理
实验中,研究人员采用了976纳米激光二极管作为泵浦源,并通过976/1600纳米波分多路复用器将其耦合到腔中。使用的1.8米商用掺铒光纤在1530纳米处的芯吸收系数为110分贝/米,确保了高效的光-光转换效率。环行器作为隔离器,防止了空间烧孔的影响,而光纤光栅的精确控制则保证了特定波长的光信号能够被有效地反射和传输。
滤波器设计与性能
为了保证单纵模运行,研究人员增加了两个50:50的光耦合器作为高精度滤波器,组成两个级联子环。这种设计不仅增加了纵模间距,减少了跳模现象,还通过游标效应确保了只有满足各子环共振条件的纵模才能振荡。实验结果表明,这种配置确保了激光器在高品质因子下的单频运转。
稳定性与线宽测量
在60分钟的连续监测中,激光器的中心波长稳定在1600.06纳米,波长波动小于光谱分析仪的极限分辨率0.02纳米,输出功率变化小于0.169分贝。这些数据证明了激光器的卓越稳定性。此外,通过自制的短延迟自外差干涉仪测量,激光器的线宽约为480赫兹,这一结果在相干激光雷达和远距离相干光通信领域具有重要意义。
这项研究不仅为实现L波段单频光纤激光器提供了新的实验思路,而且其低成本和高滤波能力的设计为未来的光通信和遥感技术的发展提供了强有力的技术支持。随着这项技术的进一步成熟和应用,我们有望在不久的将来看到1.6微米波段激光器在多个领域的广泛应用,从而开启L波段激光设备的新纪元。
-
半导体抛光设备自动化应用及工艺质量管控要点探析
在半导体器件规模化量产进程中,抛光工艺作为保障晶圆加工精度与表面质量的核心环节,其设备自动化水平、工艺参数调控能力、检测体系完善度及异常处置效率,直接决定生产效率、工艺稳定性与产品良率。本文从抛光设备自动化配置要求、核心工艺参数调控、关键检测指标界定及常见工艺异常处理四个维度,系统阐述半导体抛光工艺的质量管控核心要点,为半导体抛光制程的标准化、精细化实施提供参考。
2026-02-12
-
硅晶圆激光切割核心技术深度解析:原理、工艺与质量把控
在半导体制造产业链中,硅晶圆切割是芯片成型的关键工序,其加工精度与效率直接影响芯片良品率和产业发展节奏。随着微电子器件向微型化、薄型化升级,传统切割方式的弊端逐渐显现,激光切割凭借高精度、低损伤的技术优势成为行业主流。本文从激光切割系统的硬件构成出发,深入拆解隐形切割与消融切割两大核心工艺,解析光斑、焦点的精度控制逻辑,并探讨切割质量的评价维度与效率平衡策略,系统梳理硅晶圆激光切割的核心技术体系
2026-02-12
-
无掩模激光直写技术研究概述
无掩模激光直写技术作为微纳加工领域的先进光刻技术,摒弃了传统光刻工艺对掩模版的依赖,凭借直接写入的核心特性,在复杂微纳结构制备、高精度图案加工中展现出独特优势,成为微纳加工领域的重要技术方向。本文从工作原理与流程、技术特性、现存挑战、分辨率与对准参数、核心设备及厂务动力配套要求等方面,对该技术进行全面梳理与阐述。
2026-02-12
-
SiC功率器件的高温时代:封装成为行业发展核心瓶颈
在半导体功率器件技术迭代进程中,碳化硅(SiC)凭借高温工作、高电流密度、高频开关的核心优势,成为推动功率半导体升级的关键方向,其普及大幅提升了器件的功率密度与工作效率,为功率半导体行业发展带来全新机遇。但与此同时,行业发展的核心瓶颈正悄然从芯片设计与制造环节,转移至封装层面。当SiC将功率器件的工作温度与功率密度不断推高,芯片本身已具备承受更高应力的能力,而封装环节的材料适配、热路径设计等问题却日益凸显,高温与快速功率循环叠加的工况下,焊料与热路径成为决定SiC功率模块寿命的核心因素,封装技术的发展水平,正成为制约SiC功率器件产业化落地与长期可靠应用的关键。
2026-02-12
