【光学前沿资讯】基于两个级联子环的1.6微米单频掺铒光纤激光器:开辟L波段激光器新纪元
在现代光学技术中,单频光纤激光器因其窄线宽、优异的相干性和高光信噪比而在多个领域扮演着重要角色。随着光通信传输容量需求的日益增长,激光波长的扩展至1.6微米的L波段变得尤为迫切。L波段不仅覆盖了眼睛安全的波段,还因其对烟雾的高穿透能力而在大气遥感方面展现出巨大潜力。近期,一项突破性的研究成果为这一领域带来了新的曙光,翟雅琦等人成功实现了一种工作在1.6微米波长的稳定窄线宽单频掺铒光纤激光器。
技术亮点
该激光器的核心在于其创新的腔体设计,通过在主环腔内集成法布里-珀罗光纤布拉格光栅和两个级联的子环来实现单频运转。这种设计不仅提高了激光器的稳定性,还显著提升了光信噪比至73分贝以上,这对于保证信号的清晰传输至关重要。
实验装置与原理
实验中,研究人员采用了976纳米激光二极管作为泵浦源,并通过976/1600纳米波分多路复用器将其耦合到腔中。使用的1.8米商用掺铒光纤在1530纳米处的芯吸收系数为110分贝/米,确保了高效的光-光转换效率。环行器作为隔离器,防止了空间烧孔的影响,而光纤光栅的精确控制则保证了特定波长的光信号能够被有效地反射和传输。
滤波器设计与性能
为了保证单纵模运行,研究人员增加了两个50:50的光耦合器作为高精度滤波器,组成两个级联子环。这种设计不仅增加了纵模间距,减少了跳模现象,还通过游标效应确保了只有满足各子环共振条件的纵模才能振荡。实验结果表明,这种配置确保了激光器在高品质因子下的单频运转。
稳定性与线宽测量
在60分钟的连续监测中,激光器的中心波长稳定在1600.06纳米,波长波动小于光谱分析仪的极限分辨率0.02纳米,输出功率变化小于0.169分贝。这些数据证明了激光器的卓越稳定性。此外,通过自制的短延迟自外差干涉仪测量,激光器的线宽约为480赫兹,这一结果在相干激光雷达和远距离相干光通信领域具有重要意义。
这项研究不仅为实现L波段单频光纤激光器提供了新的实验思路,而且其低成本和高滤波能力的设计为未来的光通信和遥感技术的发展提供了强有力的技术支持。随着这项技术的进一步成熟和应用,我们有望在不久的将来看到1.6微米波段激光器在多个领域的广泛应用,从而开启L波段激光设备的新纪元。
-
飞秒激光技术:引领电镜载网加工进入高精度高效时代
在微纳尺度科学研究与工业检测领域,电子显微镜(以下简称“电镜”)是揭示物质微观结构、探究材料性能机理的核心观测工具。而电镜载网作为支撑与固定待测样品的关键组件,其加工质量不仅直接决定样品固定的稳定性,更对薄膜沉积效果、器件结构分析精度及最终电镜成像质量产生关键性影响。因此,研发适配微纳领域需求的载网加工技术,已成为提升电镜应用效能的重要环节。
2025-09-30
-
光的折射与光速变化机制探析
将直筷斜插入盛水容器中,肉眼可观察到筷子在水面处呈现“弯折”形态;夏季观察游泳池时,主观感知的池底深度显著浅于实际深度——此类日常现象的本质,均是光在不同介质界面发生折射的结果。在物理学范畴中,折射现象的核心特征之一是光的传播速度发生改变。然而,“光以光速传播”是大众熟知的常识,为何光在折射过程中速度会出现变化?这一问题需从光的本质属性、介质与光的相互作用等角度展开严谨分析。
2025-09-30
-
纳米尺度光与物质强耦合新突破:定向极化激元技术开辟精准调控研究新范式
2025年9月22日,国际权威期刊《NaturePhotonics》发表了一项具有里程碑意义的研究成果:由西班牙奥维耶多大学PabloAlonso-González教授与多诺斯蒂亚国际物理中心AlexeyNikitin教授联合领衔的研究团队,首次通过实验实现了纳米尺度下传播型极化激元与分子振动的定向振动强耦合(directionalvibrationalstrongcoupling,VSC)。该突破不仅为极化激元化学领域拓展了全新研究维度,更推动“光与物质相互作用的按需调控”从理论构想迈向实验验证阶段。
2025-09-30
-
从传统工艺到原子级精控了解超光滑镜片加工技术的六大核心路径
超光滑镜片作为光刻机、空间望远镜、激光雷达等高端光学系统的核心元件,其表面微观粗糙度需达到原子级水平(通常要求均方根粗糙度RMS<0.5nm),以最大限度降低光散射损耗,保障系统光学性能。前文已围绕超光滑镜片的定义、潜在危害及检测方法展开探讨,本文将系统梳理其加工技术体系,从奠定行业基础的传统工艺,到支撑当前高精度需求的先进技术,全面解析实现原子级光滑表面的六大核心路径。
2025-09-30