【光学前沿】超薄相机技术的新突破:首尔国立大学的超表面折叠镜头系统
在消费电子领域,尤其是智能手机和增强/虚拟现实设备中,超薄相机技术一直是一个重要的研究方向。最近,韩国首尔国立大学的研究人员在这一领域取得了重大进展,他们开发了一种超薄相机的超表面折叠镜头系统,这项技术有望彻底改变我们对相机厚度的传统认知。

传统相机的局限性
传统的相机系统由于其光学元件的物理特性,很难实现超薄设计。这些系统通常由多个垂直堆叠的折射透镜组成,由于镜片之间的空隙和每个镜片的体积,限制了相机变得更薄的可能性。
超表面技术的应用
首尔国立大学的研究人员提出了一种创新的解决方案,即使用超表面折叠光学元件的透镜系统。超表面是能够在亚波长尺度上操纵光的纳米结构的二维阵列,这种技术的发展为光学系统的设计带来了新的可能性。
设计与性能
在这项研究中,研究人员设计了一个由三个超表面组成的折叠透镜系统,工作波长为852nm。这个系统通过在玻璃基板内对光线进行多折叠路径直射,实现了0.7mm的超薄镜头系统,约为焦距的1/2。该系统的F数为4,具有接近衍射极限的成像质量,在852nm的工作波长下具有10°视场。
实验验证
研究人员通过使用852nm激光照射制造的样品来评估聚焦性能。实验结果表明,成像性能几乎受衍射限制,平均Strehl比为0.85,这表明成像性能几乎达到了理论最佳值。此外,通过照亮目标物体并通过超表面折叠镜头系统捕获图像来评估成像性能,结果与传统相机系统相当。
技术优势与未来展望
这项技术的优势在于其能够在保持紧凑光路的同时显著减少镜头系统的厚度。光路折叠的数量以及超表面的尺寸和数量不会影响整体系统厚度,这为进一步压缩透镜系统厚度提供了可能性。此外,色差是获得高质量图像时需要考虑的重要因素,研究表明,超表面折叠镜头系统与反卷积算法配对时,能够使用适度的光谱带宽产生高质量的图像。
首尔国立大学的研究团队通过这项研究展示了在很薄的空间内实现紧凑光路的能力,这是传统光学元件和系统配置的重大技术进步。这项技术不仅有望应用于智能手机和虚拟/增强现实设备,还有潜力推动其他需要超薄相机技术的领域的发展。随着计算图像处理算法的进一步集成和优化,超表面光学的成像性能有望取得更大的突破,为未来的光学系统设计开辟新的道路。
-
硅光、光模块与CPO的关联及核心特性分析
硅光、光模块、CPO这些高频出现的技术术语,背后承载着数据传输效率突破的核心逻辑。从传统通信网络到新一代数据中心,光传输技术的每一次革新都离不开材料、结构与封装方式的突破。本文将带你走进光传输技术的核心圈层,揭秘硅光技术如何推动光模块从分立组装走向共封装时代,以及这条进化之路上的关键突破与未来方向。
2025-12-31
-
铋基钙钛矿展现强非线性光学响应,推动全光器件发展
近日,燕山大学与南开大学联合研究团队在无铅钙钛矿非线性光学材料领域取得重要突破。相关成果以《空间自相位调制铋基钙钛矿的强非线性响应及其全光应用》为题,发表于国际知名期刊Laser&PhotonicsReviews(2025,19(8):2401929)。该研究不仅系统揭示了有机–无机杂化铋基钙钛矿在可见光波段的优异三阶非线性光学性能,还成功演示了其在全光开关与全光二极管等关键光子器件中的实际应用潜力。
2025-12-31
-
光学三大核心元件:平面镜、凸透镜与凹透镜的原理及应用探析
从日常梳妆的镜面反射到航天探测的精密成像,从视力矫正的光学器具到芯片制造的光刻技术,光学元件已深度融入人类生产生活与尖端科技领域。平面镜、凸透镜、凹透镜作为光学系统的三大核心基石,其基于光的反射与折射规律的工作机制,构建了现代光学技术的基础框架。本文将系统阐述三者的物理原理、设计规范、应用场景及发展趋势,展现基础光学元件的科学价值与技术魅力。
2025-12-31
-
TriAngle激光束准直:一看就懂的高精度光学校准方案
激光在工业加工(切割、焊接)、医疗设备(激光手术仪)、科研实验等场景中,都需要“走得直、聚得准”。如果激光束跑偏、发散,要么加工出来的产品不合格,要么医疗操作有风险,实验数据也会出错。
传统的激光校准靠人工慢慢调,又费时间又容易出错,环境稍微变一点(比如温度、振动)就不准了。而TriAngle是专门解决这个问题的设备,能让激光校准变得简单、快速又精准。2025-12-30
