【光学前沿】多参数光束编织技术土坯对光学涡旋晶格的实现精准掌控
在光学领域,对光束的精确控制一直是科研人员追求的目标。近日,《中国激光》杂志社报道了一项创新技术——多参数光束编织,该技术能够对光学涡旋晶格进行精准控制,为光镊技术等领域的应用开辟了新的可能性。
一、研究背景
涡旋光束因其携带轨道角动量而成为研究热点。光学涡旋晶格具有多个光学涡旋,可携带更多信息并提供额外的自由度,在多粒子捕获与灵巧光操纵、基于轨道角动量的超大容量光通信、光学测量等领域展现出广阔的应用前景。然而,目前的研究大多只关注光场的整体分布,忽视了内部暗核、拓扑荷性质,限制了其在光学微操纵领域的应用广度与深度。
二、异常光学涡旋晶格的研究
为了进一步丰富光学涡旋晶格的空间模式分布、拓宽其在光镊领域的应用,研究人员生成了可任意拼接相位的光学涡旋,并通过双光束同轴干涉叠加产生异常光学涡旋晶格。这种光场具有更加丰富的调控维度,在多微粒操纵领域实现对不同粒子运动状态的控制方面有着潜在应用优势。
三、后续工作展望
异常光学涡旋晶格具有更加丰富的调控维度,有望在光镊领域中实现多种微粒操纵方式,例如改变微粒空间位置排布、移动环上特定微粒等操作。此外,基于傅里叶空间分析的广义理论,可使该类光场具有可控的传播强度,从而实现异常光学涡旋晶格的稳定传输,拓展其在光学通信方面的应用。
李新忠教授,河南科技大学学科办主任/物理工程学院院长,博士,教授,博士生导师。他主要从事新型光场构建、调控及应用研究,并在多个知名期刊发表SCI论文。
多参数光束编织技术的研究不仅展示了在精确控制光场特性方面的潜力,也为光镊技术、光学通信等领域的应用提供了新的思路。随着这项技术的进一步发展,我们有望在更多领域看到其带来的革命性变化。
-
剑桥大学发布太赫兹辐射调控新方法,为多领域高端技术突破奠定基础
2025年9月1日,英国剑桥讯——剑桥大学研究团队正式公布一种可在太赫兹(THz,Terahertz)频段实现辐射调控的技术方法。该研究成果或为通信、成像及传感领域的高端技术研发开辟新路径,同时标志着人类在开发太赫兹频段实用化设备的进程中取得重大突破。
2025-09-03
-
近红外成像技术:透视迷雾的“特殊视觉手段”,为何难以精准呈现细节?
雾天开车时,前挡风玻璃被白茫茫的雾气笼罩,仪表盘上的导航再精准,视线受阻仍是致命隐患;深夜小区的监控画面里,人影模糊成一团,连衣着颜色都难以分辨——这些场景里,藏着一种能“打破视觉局限”的技术:近红外成像。它能让我们“看见”肉眼和普通相机遗漏的世界,却又常常因画面模糊、满是噪点让人皱眉。这背后,是近红外成像的独特优势与先天困境的博弈。
2025-09-03
-
引领未来影像品质——手机摄像头模组MTF测试新标杆
在智能手机摄影性能不断突破的今天,消费者对手机镜头的成像质量提出了更高要求。从超高清视频录制到暗光环境下的细节捕捉,每一张照片、每一段视频的背后,都离不开精密的光学设计与严格的测试标准。作为手机摄像头模组制造的核心环节之一,MTF(调制传递函数)测试已成为衡量镜头性能优劣的关键指标。如何通过科学高效的测试方案,确保每一颗镜头都能达到设计标准?欧光科技推出的ImageMaster®PROHD工业型光学传递函数测量仪,为行业树立了全新的测试标杆。
2025-09-03
-
光学元件表面粗糙度的定义、参数与测量方法的系统解析
在光学系统的设计、制造与应用全过程中,光学元件(如透镜、棱镜、反射镜等)的表面质量是决定系统成像精度、透光效率及长期稳定性的核心因素。表面粗糙度作为评价光学元件表面质量的关键指标,不仅是光学加工环节的核心控制参数,更是行业内评估元件是否满足应用要求的重要技术依据。深入理解表面粗糙度的本质内涵、标准化参数及专业测量方法,对推动光学领域生产工艺优化与应用效能提升具有重要的理论与实践意义。
2025-09-03