【光学前沿】多参数光束编织技术土坯对光学涡旋晶格的实现精准掌控
在光学领域,对光束的精确控制一直是科研人员追求的目标。近日,《中国激光》杂志社报道了一项创新技术——多参数光束编织,该技术能够对光学涡旋晶格进行精准控制,为光镊技术等领域的应用开辟了新的可能性。

一、研究背景
涡旋光束因其携带轨道角动量而成为研究热点。光学涡旋晶格具有多个光学涡旋,可携带更多信息并提供额外的自由度,在多粒子捕获与灵巧光操纵、基于轨道角动量的超大容量光通信、光学测量等领域展现出广阔的应用前景。然而,目前的研究大多只关注光场的整体分布,忽视了内部暗核、拓扑荷性质,限制了其在光学微操纵领域的应用广度与深度。
二、异常光学涡旋晶格的研究
为了进一步丰富光学涡旋晶格的空间模式分布、拓宽其在光镊领域的应用,研究人员生成了可任意拼接相位的光学涡旋,并通过双光束同轴干涉叠加产生异常光学涡旋晶格。这种光场具有更加丰富的调控维度,在多微粒操纵领域实现对不同粒子运动状态的控制方面有着潜在应用优势。
三、后续工作展望
异常光学涡旋晶格具有更加丰富的调控维度,有望在光镊领域中实现多种微粒操纵方式,例如改变微粒空间位置排布、移动环上特定微粒等操作。此外,基于傅里叶空间分析的广义理论,可使该类光场具有可控的传播强度,从而实现异常光学涡旋晶格的稳定传输,拓展其在光学通信方面的应用。
李新忠教授,河南科技大学学科办主任/物理工程学院院长,博士,教授,博士生导师。他主要从事新型光场构建、调控及应用研究,并在多个知名期刊发表SCI论文。
多参数光束编织技术的研究不仅展示了在精确控制光场特性方面的潜力,也为光镊技术、光学通信等领域的应用提供了新的思路。随着这项技术的进一步发展,我们有望在更多领域看到其带来的革命性变化。
-
镜头焦距的核心原理与应用特性解析
镜头焦距作为光学成像领域的基础概念,其定义、计量基准及应用特性直接影响摄影成像效果与镜头设计逻辑。本文将从核心定义、基础理论、不同类型镜头的焦距特点及实践要点等方面,进行系统性阐述。
2026-01-14
-
光学核心度量体系解析:光通量、发光强度、照度与亮度的科学阐释
光作为人类生产生活中不可或缺的核心要素,其产生、传播与接收的量化描述是光学应用的基础前提。在工程实践、照明设计、显示技术等诸多领域,一套精准的光学度量体系是保障产品性能、优化使用体验的关键。本文将系统阐释光通量、立体角、发光强度、照度、亮度及投影立体角等核心概念,梳理其内在逻辑关联,为相关领域的实践与研究提供理论参考。
2026-01-13
-
光学胶粘技术的应用特性与实践规范探析
在现代光子学、航天航空、精密仪器制造等领域,光学胶粘技术作为核心装配手段之一,其性能直接影响光学系统的稳定性、成像质量与使用寿命。该技术通过特殊光学胶材实现光学元件的精准固定与功能整合,需兼顾透光性、粘合强度、尺寸稳定性等多重核心要求。本文将从技术核心要素、主流胶种特性、规范操作流程、替代粘合技术及应用局限性等方面,对光学胶粘技术进行系统阐述。
2026-01-13
-
线性畸变与光学畸变的本质差异及精密光学系统设计优化策略
在半导体光刻、工业计量镜头等精密光学系统的设计与验证过程中,普遍存在一项关键认知矛盾:软件优化报告显示光学畸变已得到有效控制时,实际投影图像却可能出现网格扭曲;而当投影网格实现完美横平竖直时,软件却会反馈显著的畸变数值。这一矛盾的核心症结,在于“线性投影工程要求”与“传统光学畸变评价体系”在定义内涵、基准设定及目标导向层面的根本差异。本文将系统剖析其内在原在半导体光刻、工业计量镜头等精密光学系统的设计与验证过程中,普遍存在一项关键认知矛盾:软件优化报告显示光学畸变已得到有效控制时,实际投影图像却可能出现网格扭曲;而当投影网格实现完美横平竖直时,软件却会反馈显著的畸变数值。这一矛盾的核心症结,在于“线性投影工程要求”与“传统光学畸变评价体系”在定义内涵、基准设定及目标导向层面的根本差异。本文将系统剖析其内在原理,厘清核心概念边界,为精密光学系统的设计、验证提供规范化解决方案。理,厘清核心概念边界,为精密光学系统的设计、验证提供规范化解决方案
2026-01-12
