探索光纤激光器中的孤子碰撞动力学:奇异爆炸现象的新发现
在光纤激光器领域,孤子分子与单孤子之间的碰撞动力学一直是研究的热点。最近,天津大学精密仪器与光电子工程学院的刘润民博士及其团队在双波长锁模光纤激光器中观察到了一种奇异的爆炸现象,这一发现不仅丰富了我们对孤子动力学的理解,也为高性能双梳光源的设计提供了新的思路。

孤子,作为一种特殊的光脉冲,在光纤激光器中表现出独特的非线性特性。它们能够在保持形状不变的情况下独立传播,但当孤子分子与单孤子发生碰撞时,却可能引发一系列复杂的动力学现象。在最新的一项研究中,刘润民博士及其团队通过实验和数值模拟,揭示了这些碰撞背后的奇异爆炸事件。
实验中,研究人员利用时间拉伸色散傅里叶变换技术,实时测量了双波长锁模光纤激光器中的光谱动力学。他们发现,在固有周期性碰撞的过程中,孤子对爆炸和周期性孤子爆炸的现象尤为引人注目。具体来说,束缚脉冲内部运动引起的能量积累在碰撞后会导致孤子对爆炸,而周期性孤子爆炸则几乎不受碰撞影响。
此外,通过数值模拟,研究人员预测了孤子对与单孤子之间的碰撞可能诱发孤子对的双Hopf型分岔,这一预测为研究双色锁模光纤激光器中的混沌动力学提供了新的可能性。
这项研究的意义不仅在于揭示了孤子分子与单孤子之间复杂的相互作用,而且为理解光纤激光器中的非线性现象提供了新的视角。孤子爆炸作为一种极端事件,在光纤激光器中普遍存在,通常会导致光谱完全坍塌。然而,本研究中的爆炸并不会导致完全的光谱坍塌,而是表现出适度的能量释放和周期性的爆炸行为。
刘润民博士团队的这一发现,不仅为粒子物理学中物质分子和原子之间的相互作用提供了新的见解,也为高性能双梳源的设计提供了有价值的参考。随着对孤子动力学更深入的研究,我们有望在未来开发出更加稳定和高效的光纤激光器技术。
研究人员信息:
刘润民,天津大学精密仪器与光电子工程学院博士,研究方向为超快光纤激光器。
宋有建,天津大学精密仪器与光电子工程学院教授,研究方向为超快光学和光学计量。
胡明列,天津大学精密仪器与光电子工程学院教授,研究方向为超短脉冲激光技术、光子晶体光纤技术等。
-
半导体抛光设备自动化应用及工艺质量管控要点探析
在半导体器件规模化量产进程中,抛光工艺作为保障晶圆加工精度与表面质量的核心环节,其设备自动化水平、工艺参数调控能力、检测体系完善度及异常处置效率,直接决定生产效率、工艺稳定性与产品良率。本文从抛光设备自动化配置要求、核心工艺参数调控、关键检测指标界定及常见工艺异常处理四个维度,系统阐述半导体抛光工艺的质量管控核心要点,为半导体抛光制程的标准化、精细化实施提供参考。
2026-02-12
-
硅晶圆激光切割核心技术深度解析:原理、工艺与质量把控
在半导体制造产业链中,硅晶圆切割是芯片成型的关键工序,其加工精度与效率直接影响芯片良品率和产业发展节奏。随着微电子器件向微型化、薄型化升级,传统切割方式的弊端逐渐显现,激光切割凭借高精度、低损伤的技术优势成为行业主流。本文从激光切割系统的硬件构成出发,深入拆解隐形切割与消融切割两大核心工艺,解析光斑、焦点的精度控制逻辑,并探讨切割质量的评价维度与效率平衡策略,系统梳理硅晶圆激光切割的核心技术体系
2026-02-12
-
无掩模激光直写技术研究概述
无掩模激光直写技术作为微纳加工领域的先进光刻技术,摒弃了传统光刻工艺对掩模版的依赖,凭借直接写入的核心特性,在复杂微纳结构制备、高精度图案加工中展现出独特优势,成为微纳加工领域的重要技术方向。本文从工作原理与流程、技术特性、现存挑战、分辨率与对准参数、核心设备及厂务动力配套要求等方面,对该技术进行全面梳理与阐述。
2026-02-12
-
SiC功率器件的高温时代:封装成为行业发展核心瓶颈
在半导体功率器件技术迭代进程中,碳化硅(SiC)凭借高温工作、高电流密度、高频开关的核心优势,成为推动功率半导体升级的关键方向,其普及大幅提升了器件的功率密度与工作效率,为功率半导体行业发展带来全新机遇。但与此同时,行业发展的核心瓶颈正悄然从芯片设计与制造环节,转移至封装层面。当SiC将功率器件的工作温度与功率密度不断推高,芯片本身已具备承受更高应力的能力,而封装环节的材料适配、热路径设计等问题却日益凸显,高温与快速功率循环叠加的工况下,焊料与热路径成为决定SiC功率模块寿命的核心因素,封装技术的发展水平,正成为制约SiC功率器件产业化落地与长期可靠应用的关键。
2026-02-12
