全自动数字测焦仪OptiSpheric®的高精度光学测量解决方案
在精密光学领域,准确的测量和分析是确保产品质量和性能的关键。OptiSpheric®系列全自动数字测焦仪,以其高精度和可靠性,成为了光学测量领域的佼佼者。本文将详细介绍OptiSpheric®通用途光学测量仪的产品特点、应用范围以及技术规格。
一、OptiSpheric®产品特点
OptiSpheric®系列光学测量仪以其高精度和可靠性,为用户提供了可追溯到国际标准的测量结果。这些设备搭载了可靠的软件,能够精确地进行自动对焦或手动对焦,满足了广泛的应用需求。此外,多波长功能使得OptiSpheric®能够适应不同波长的测量需求,增加了其在光学测量领域的适用性。
二、产品应用
OptiSpheric®系列光学测量仪的应用范围广泛,包括但不限于:
1.正值或负值有效焦距(EFL)的测量
2.调制传递函数(MTF)的测量
3.后截距(BFL)的测量
4.曲率半径(R)的测量
此外,OptiSpheric®还提供了可扩展功能,如单镜片中心偏差测量、镜头组中心偏差测量、平面光学元件角度测量以及光学系统空气间隔测量,这些功能进一步增强了其在光学测量领域的应用能力。
三、技术规格
OptiSpheric®系列提供了多种型号,以满足不同用户的需求。以下是部分型号的技术规格:
1.OptiSpheric®AutoFocus500:适用于直径5至35mm的样品,有效通光孔径为28mm,EFL测量范围为+5至+450mm或-5至-450mm。
2.OptiSpheric®AutoFocus1000:适用于直径5至75mm的样品,有效通光孔径为48mm,EFL测量范围为+5至+1000mm或-5至-1000mm。
3.OptiSpheric®AutoFocus1500:适用于直径5至75mm的样品,有效通光孔径为48mm,EFL测量范围为+5至+1500mm或-5至-1200mm。
4.OptiSpheric®AutoFocus2000:适用于直径5至75mm的样品,有效通光孔径为48mm,EFL测量范围为+5至+2000mm或-5至-1500mm。
所有型号在EFL测量精度上均为±0.2%,MTF测量精度为±2%,BFL测量精度为±0.3%,R测量精度为±0.3%。重复精度方面,EFL为0.03至0.2%,MTF为±1%,BFL为±0.2%,R为±0.2%。
四、扩展功能
OptiSpheric®系列还提供了以下扩展功能:
1.中心偏差测量:测量范围(R/EFL)±5至±450mm,扩展范围(R/EFL)±2000mm,测量精度为±2″或±0.2μm,重复精度为±1″或±0.1μm。
2.角度测量:测量精度为±1.3″,重复精度为±0.2″,分辨率为±0.01″。
3.空气间隔测量:提供200mm、400mm、600mm或800mm光程的测量精度选项,测量精度为±0.15μm、±0.5μm或±1μm,测量速度为1.5″/10mm光程。
4.测量波长:1310nm。
OptiSpheric®系列全自动数字测焦仪以其高精度、可靠性和广泛的应用范围,成为了光学测量领域的理想选择。无论是在实验室研究还是工业生产中,OptiSpheric®都能为用户提供精确的测量结果,确保光学组件和系统的性能达到预期标准。欧光科技(福建)有限公司凭借其专业的技术和服务,为全球用户提供了高质量的光学测量解决方案。
-
飞秒激光技术:引领电镜载网加工进入高精度高效时代
在微纳尺度科学研究与工业检测领域,电子显微镜(以下简称“电镜”)是揭示物质微观结构、探究材料性能机理的核心观测工具。而电镜载网作为支撑与固定待测样品的关键组件,其加工质量不仅直接决定样品固定的稳定性,更对薄膜沉积效果、器件结构分析精度及最终电镜成像质量产生关键性影响。因此,研发适配微纳领域需求的载网加工技术,已成为提升电镜应用效能的重要环节。
2025-09-30
-
光的折射与光速变化机制探析
将直筷斜插入盛水容器中,肉眼可观察到筷子在水面处呈现“弯折”形态;夏季观察游泳池时,主观感知的池底深度显著浅于实际深度——此类日常现象的本质,均是光在不同介质界面发生折射的结果。在物理学范畴中,折射现象的核心特征之一是光的传播速度发生改变。然而,“光以光速传播”是大众熟知的常识,为何光在折射过程中速度会出现变化?这一问题需从光的本质属性、介质与光的相互作用等角度展开严谨分析。
2025-09-30
-
纳米尺度光与物质强耦合新突破:定向极化激元技术开辟精准调控研究新范式
2025年9月22日,国际权威期刊《NaturePhotonics》发表了一项具有里程碑意义的研究成果:由西班牙奥维耶多大学PabloAlonso-González教授与多诺斯蒂亚国际物理中心AlexeyNikitin教授联合领衔的研究团队,首次通过实验实现了纳米尺度下传播型极化激元与分子振动的定向振动强耦合(directionalvibrationalstrongcoupling,VSC)。该突破不仅为极化激元化学领域拓展了全新研究维度,更推动“光与物质相互作用的按需调控”从理论构想迈向实验验证阶段。
2025-09-30
-
从传统工艺到原子级精控了解超光滑镜片加工技术的六大核心路径
超光滑镜片作为光刻机、空间望远镜、激光雷达等高端光学系统的核心元件,其表面微观粗糙度需达到原子级水平(通常要求均方根粗糙度RMS<0.5nm),以最大限度降低光散射损耗,保障系统光学性能。前文已围绕超光滑镜片的定义、潜在危害及检测方法展开探讨,本文将系统梳理其加工技术体系,从奠定行业基础的传统工艺,到支撑当前高精度需求的先进技术,全面解析实现原子级光滑表面的六大核心路径。
2025-09-30