中心偏差测量仪OptiCentric Smart的测量原理、系统硬件和软件,以及技术规格
在光学制造领域,精确的中心偏差测量对于确保产品质量至关重要。OptiCentric Smart中心偏差测量仪以其先进的技术,为光学元件的精确测量提供了解决方案。本文将详细介绍OptiCentric Smart的测量原理、系统硬件和软件,以及技术规格。

一、测量原理
中心偏差的测量通常涉及在光透射或反射时旋转被测样品。OptiCentric Smart采用自准直仪聚焦于被测表面曲率中心或被测镜片焦平面的方法。这种方法特别适用于通过镜片表面反射法测量单个透镜的中心偏差,能够提供真正意义上的中心偏差数据。
在测量过程中,透镜的测量头被聚焦在被测透镜表面的曲率中心。通过CCD相机观察分划板反射图像,并用软件进行分析。如果存在中心偏差,在参考轴上旋转样品时会描绘一个圆,这个圆的半径与中心误差成正比,从而描述从透镜表面的曲率中心到参考轴的距离。
二、系统硬件
OptiCentric Smart中心偏差测量仪的硬件配置包括:
1.自准直仪测量头:配备十字分划板、高功率LED光源和高分辨率CCD相机,实现全自动计算机控制,极大提高了测量的精确度和重复性。
2.测量物镜及物镜X/Y调节装置:用于测量不同曲率半径的样品,物镜X/Y调节装置可使得反射像置于自准直仪视场中。
3.高精度底座:配备步进电机和控制器,实现全自动计算机控制,帮助操作者快速精准地找到待测样品的曲率中心。
4.自动真空镜头旋转装置:包括三轴调节工作台、自动旋转支臂、真空吸附装置等,用于测量镜片表面的偏心。
三、系统软件
OptiCentric软件在Windows操作系统下运行,用户可以通过软件控制整个系统和测量过程。软件包含两种测量模式:CentrationinReflection(反射法)和MultipleLenses(多镜面测量),适用于单一表面的曲率中心到镜片机械轴的倾斜误差测量和最多三个表面的面间偏心测量。
四、技术规格
1.测量功能:单镜片反射式偏心,注塑镜片/模压镜片面间偏心。
2.测量精度:±2″(在稳定的环境中)。
3.重复精度:1″(在稳定的环境中)。
4.样品直径范围:560mm(标配),可扩展至1200mm。
5.样品曲率半径范围:±5±250mm(标配),可扩展至±1±2000mm。
6.测量模式:自动测量。
7.样品旋转方式:自动旋转。
8.测量速度:310秒(取决于样品直径)。
OptiCentric Smart 偏心仪以其高精度和自动化的特点,为光学制造行业提供了一个强大的工具,以确保光学元件的质量和性能。通过精确的中心偏差测量,OptiCentricSmart帮助制造商提高生产效率和产品质量。
-
硅光、光模块与CPO的关联及核心特性分析
硅光、光模块、CPO这些高频出现的技术术语,背后承载着数据传输效率突破的核心逻辑。从传统通信网络到新一代数据中心,光传输技术的每一次革新都离不开材料、结构与封装方式的突破。本文将带你走进光传输技术的核心圈层,揭秘硅光技术如何推动光模块从分立组装走向共封装时代,以及这条进化之路上的关键突破与未来方向。
2025-12-31
-
铋基钙钛矿展现强非线性光学响应,推动全光器件发展
近日,燕山大学与南开大学联合研究团队在无铅钙钛矿非线性光学材料领域取得重要突破。相关成果以《空间自相位调制铋基钙钛矿的强非线性响应及其全光应用》为题,发表于国际知名期刊Laser&PhotonicsReviews(2025,19(8):2401929)。该研究不仅系统揭示了有机–无机杂化铋基钙钛矿在可见光波段的优异三阶非线性光学性能,还成功演示了其在全光开关与全光二极管等关键光子器件中的实际应用潜力。
2025-12-31
-
光学三大核心元件:平面镜、凸透镜与凹透镜的原理及应用探析
从日常梳妆的镜面反射到航天探测的精密成像,从视力矫正的光学器具到芯片制造的光刻技术,光学元件已深度融入人类生产生活与尖端科技领域。平面镜、凸透镜、凹透镜作为光学系统的三大核心基石,其基于光的反射与折射规律的工作机制,构建了现代光学技术的基础框架。本文将系统阐述三者的物理原理、设计规范、应用场景及发展趋势,展现基础光学元件的科学价值与技术魅力。
2025-12-31
-
TriAngle激光束准直:一看就懂的高精度光学校准方案
激光在工业加工(切割、焊接)、医疗设备(激光手术仪)、科研实验等场景中,都需要“走得直、聚得准”。如果激光束跑偏、发散,要么加工出来的产品不合格,要么医疗操作有风险,实验数据也会出错。
传统的激光校准靠人工慢慢调,又费时间又容易出错,环境稍微变一点(比如温度、振动)就不准了。而TriAngle是专门解决这个问题的设备,能让激光校准变得简单、快速又精准。2025-12-30
