什么是超短脉冲激光?玻璃焊接技术的解决方案!
在现代工业中,玻璃因其卓越的物理特性被广泛应用于多个领域,包括半导体、生物医疗和消费电子等。然而,玻璃的连接和组装一直是一个技术挑战。传统的连接技术如机械安装和胶合存在精度、强度和稳定性的局限性。超短脉冲激光(USP)技术的出现,为玻璃焊接带来了革命性的解决方案。

超短脉冲激光焊接玻璃的原理
超短脉冲激光焊接玻璃的原理基于其独特的非线性吸收特性。这种激光的脉宽极短,峰值功率高,平均功率低,能够精准控制热输入,减少热影响区,实现更精准的加工效果。在焊接过程中,由于玻璃在红外波段是透明的,聚焦的激光束能够穿透玻璃并在焦点处触发非线性吸收,导致玻璃局部熔化。
焊接过程中的裂纹问题及应对策略
USP焊接玻璃时,裂纹的形成与焊接间隙紧密相关。在零间隙焊接时,由于熔池规模较小,所产生的压缩应力相对较小,不会对玻璃造成损坏。而在有焊接间隙的情况下,冷却过程中玻璃易产生裂纹。因此,减小焊接间隙是降低裂纹风险的有效策略。
超短脉冲激光焊接玻璃的应用现状与未来展望
目前,USP激光焊接玻璃技术正逐步迈向市场化应用的新阶段。尽管这项技术具有高精度、高强度的焊接效果等显著优势,但由于设备成本较高,目前仅在少数工业应用领域中得以应用。随着USP激光器成本的持续降低,预计USP玻璃焊接将成为主流的玻璃连接技术,广泛应用于更多领域。
我们可以看到超短脉冲激光焊接技术为玻璃焊接领域带来了新的曙光,不仅提高了焊接质量,也为玻璃制品的加工和制造带来了更广阔的发展空间
-
半导体抛光设备自动化应用及工艺质量管控要点探析
在半导体器件规模化量产进程中,抛光工艺作为保障晶圆加工精度与表面质量的核心环节,其设备自动化水平、工艺参数调控能力、检测体系完善度及异常处置效率,直接决定生产效率、工艺稳定性与产品良率。本文从抛光设备自动化配置要求、核心工艺参数调控、关键检测指标界定及常见工艺异常处理四个维度,系统阐述半导体抛光工艺的质量管控核心要点,为半导体抛光制程的标准化、精细化实施提供参考。
2026-02-12
-
硅晶圆激光切割核心技术深度解析:原理、工艺与质量把控
在半导体制造产业链中,硅晶圆切割是芯片成型的关键工序,其加工精度与效率直接影响芯片良品率和产业发展节奏。随着微电子器件向微型化、薄型化升级,传统切割方式的弊端逐渐显现,激光切割凭借高精度、低损伤的技术优势成为行业主流。本文从激光切割系统的硬件构成出发,深入拆解隐形切割与消融切割两大核心工艺,解析光斑、焦点的精度控制逻辑,并探讨切割质量的评价维度与效率平衡策略,系统梳理硅晶圆激光切割的核心技术体系
2026-02-12
-
无掩模激光直写技术研究概述
无掩模激光直写技术作为微纳加工领域的先进光刻技术,摒弃了传统光刻工艺对掩模版的依赖,凭借直接写入的核心特性,在复杂微纳结构制备、高精度图案加工中展现出独特优势,成为微纳加工领域的重要技术方向。本文从工作原理与流程、技术特性、现存挑战、分辨率与对准参数、核心设备及厂务动力配套要求等方面,对该技术进行全面梳理与阐述。
2026-02-12
-
SiC功率器件的高温时代:封装成为行业发展核心瓶颈
在半导体功率器件技术迭代进程中,碳化硅(SiC)凭借高温工作、高电流密度、高频开关的核心优势,成为推动功率半导体升级的关键方向,其普及大幅提升了器件的功率密度与工作效率,为功率半导体行业发展带来全新机遇。但与此同时,行业发展的核心瓶颈正悄然从芯片设计与制造环节,转移至封装层面。当SiC将功率器件的工作温度与功率密度不断推高,芯片本身已具备承受更高应力的能力,而封装环节的材料适配、热路径设计等问题却日益凸显,高温与快速功率循环叠加的工况下,焊料与热路径成为决定SiC功率模块寿命的核心因素,封装技术的发展水平,正成为制约SiC功率器件产业化落地与长期可靠应用的关键。
2026-02-12
