光学计算的突破:新型光子存储器实现多属性优化
在人工智能和高性能计算领域,光子存储器因其高速和低能耗的潜力而备受关注。然而,传统的光子存储器往往在速度、能耗、非易失性和耐久性之间难以取得平衡。现在,一个国际研究团队在这一领域取得了重大突破,开发出了一种能够在单个平台上结合多个关键属性的新型光学存储器。

研究团队与成果
由匹兹堡大学斯旺森工程学院、加州大学圣巴巴拉分校(UCSantaBarbara)、卡利亚里大学和东京科学研究所的研究人员组成的团队,展示了一种新型光学存储器,它集成了非易失性、多位存储、高切换速度、低切换能量和高耐久性。这一成果不仅在理论上具有创新性,而且在实际应用中具有极高的价值。
技术突破与材料使用
该团队利用已有几十年历史的材料,这些材料之前主要用于静态光学应用,而非高性能光子存储器。匹兹堡大学电气与计算机工程助理教授NathanYoungblood表示:“我们在开发这些单元时使用的材料已经存在了几十年。然而,它们主要用于静态光学应用,例如片上隔离器,而不是高性能光子存储器的平台。”
关键发现与技术优势
这一发现是实现更快、更高效、更光学的计算架构的关键技术,该架构可以直接用CMOS电路编程,从而与传统计算机技术兼容。Youngblood还提到:“此外,我们的技术比其他非易失性方法的耐久性高出三个数量级,具有24亿次开关周期和纳秒速度。”

技术细节与控制机制
研究人员提出了一种基于共振的光子架构,利用磁光材料中的非互易相移来实现光子内存计算。加州大学圣巴巴拉分校实验工作的负责人PauloPintus解释说:“这就像风吹向一名短跑运动员,同时帮助另一名短跑运动员跑得更快。通过对存储单元施加磁场,我们可以根据光在环形谐振器周围顺时针或逆时针流动来控制光速。这提供了更传统的非磁性材料无法实现的额外控制水平。”
未来展望与扩展应用
该团队目前正在努力将单个存储单元扩展到大型存储阵列,以支持更多用于计算应用的数据。非互易磁光存储单元提供了一种高效的非易失性存储解决方案,可以在亚纳秒编程速度下提供无限的读/写耐久性。东京科学研究所副教授YuyaShoji表示:“我们还相信,这项技术的未来发展可以利用不同的效应来提高开关效率,而使用除Ce:YIG以外的材料的新制造技术和更精确的沉积可以进一步提升非互易光学计算的潜力。”
这项在《自然光子学》上发表的研究,不仅展示了光学存储器技术的重大进步,也为未来的光学计算架构提供了新的可能性。随着技术的进一步发展和应用,我们有望看到更快速、更节能的计算解决方案,这将对人工智能、大数据处理和高性能计算产生深远影响。
-
干涉测量术的原理、应用及技术演进研究
从宇宙天体的精细化观测到纳米级工业制造的质量管控,干涉测量术基于波的干涉效应,已发展为现代科学研究与工业生产中不可或缺的精准测量技术支撑。该技术以激光为核心载体,通过系统解析波的干涉规律,在跨学科领域实现了测量精度与应用范围的双重突破,成为推动科技进步的关键基础性工具。
2025-11-17
-
什么是柱镜光栅?微米级光学技术引领视觉领域革新
当裸眼3D影像突破平面束缚,当立体成像技术赋能产品包装升级,当光学隐身从科幻概念走向技术实践,柱镜光栅这一核心光学材料正凭借其独特的技术特性,在多个领域推动视觉体验与应用场景的深度变革。作为由微米级圆柱状凸透镜阵列构成的功能性光学材料,柱镜光栅以精准调控光线传播路径的核心能力,成为连接微观结构与宏观视觉应用的关键桥梁。
2025-11-17
-
突破性进展:阿秒涡旋脉冲串成功实现,拓展超快光-物质相互作用研究新维度
在超快光学领域,阿秒脉冲技术已成为观察原子、离子、分子等微观体系中超快电子动力学的重要手段,而轨道角动量这一关键自由度的引入,为该技术的创新发展提供了全新方向。近日,西班牙萨拉曼卡大学AlbadelasHeras教授、美国科罗拉多矿业学院DavidSchmidt教授领衔的联合研究团队,在国际权威期刊《Optica》(Vol.11,No.8)发表重磅研究成果,成功研发出阿秒涡旋脉冲串这一新型超快结构化光场。该成果通过创新性技术方案突破传统瓶颈,为化学、生物、凝聚态物理及磁学等多学科前沿研究提供了具备高时间分辨率与多维调控能力的独特工具。
2025-11-17
-
清华大学提出神经光瞳工程傅里叶叠层成像技术实现大视场高分辨率显微成像突破
在科研与医疗领域,显微镜的大视场观测与高分辨率成像需求长期存在相互制约的技术矛盾。当观测视场扩大时,边缘区域易出现图像失真、细节模糊等问题,严重影响后续分析与应用。清华大学曹良才课题组提出的神经光瞳工程傅里叶叠层成像(NePEFPM)新方法,成功破解这一技术瓶颈,为大视场高分辨率显微成像提供了创新性解决方案。相关研究成果发表于国际权威期刊《Optica》。
2025-11-17
