2.8微米掺铒萤石晶体:开启高功率激光发射新纪元
在现代医疗领域,高功率激光器的应用正日益广泛,特别是在眼科、牙科和微创手术等精细操作中。这些应用对激光器的性能提出了更高的要求,尤其是在精确度和安全性方面。近期,一项突破性的研究成果发表,介绍了一种新型的2.8微米掺铒萤石晶体激光器,它在室温下实现了高功率连续波激光发射,为医疗激光技术的发展带来了新的曙光。
一、创新的激光器设计
该激光器的核心是掺铒萤石晶体,这是一种新型的增益材料,能够在3微米光谱范围内实现高功率激光发射。研究人员通过精心设计,优化了Er3+离子的浓度,并匹配了样品的几何形状与泵浦光束轮廓,以提高激光器的效率和稳定性。此外,激光器采用了一对凹面镜腔配置,有效补偿了负热透镜效应,这是实现高功率激光发射的关键技术之一。
二、卓越的性能表现
在实验中,研究人员使用双端泵浦Er:CaF2激光器,成功实现了14.5瓦的最高记录功率,这一成果在3微米光谱范围内的激光器中是前所未有的。同时,Er:SrF2激光器也表现出色,输出功率达到了8.05瓦,均方根功率稳定性为0.35%,显示出了极高的稳定性和可靠性。
三、医疗应用前景
3微米波段的激光器在医疗领域具有重要的应用价值,因为这个波段的激光能够被人体组织有效吸收,同时对周围组织的损伤较小。因此,这种新型激光器有望在眼科手术、牙科治疗和微创手术中发挥重要作用,提供更为精确和安全的治疗方案。
四、未来展望
尽管已经取得了显著的成果,但研究人员指出,进一步提高激光器的功率仍然是未来的研究方向。他们计划通过晶体的双端键合或使用更大尺寸的样品来实现这一目标。这些改进有望使激光器的性能更上一层楼,为医疗和其他高精度应用领域带来更大的突破。
这项研究不仅展示了掺铒萤石晶体在高功率激光发射方面的潜力,也为未来的激光加工设备技术发展提供了新的思路和方向。随着技术的不断进步,我们有理由相信,这种新型激光器将在未来的医疗和工业应用中发挥越来越重要的作用。
-
低密度等离子体棱镜压缩器取得突破,突破传统光学限制,赋能超高功率激光技术
激光技术的迅猛发展,持续推动着人类对极端物理现象的探索,而拍瓦级及更高功率的激光装置,更是解开高能物理、相对论光学等领域奥秘的关键工具。然而,传统激光脉冲压缩技术长期受限于光学元件的损伤阈值,成为制约激光功率提升的核心瓶颈。近日,美国密歇根大学、罗切斯特大学等机构的科研人员联合研发出基于低密度等离子体棱镜的新型脉冲压缩器,为突破这一限制带来革命性进展,相关成果发表于《HighPower Laser Scienceand Engineering》。
2025-08-18
-
从光斑到清晰成像,光学系统如何突破"模糊"极限?
当我们透过镜头观察世界时,那些清晰的图像背后,藏着光的衍射与数学模型的复杂博弈。为何遥远的恒星在望远镜中会变成光斑?光学系统如何传递图像的细节?从艾里斑到调制传递函数,这些关键概念正是解开"模糊"谜题的钥匙。
2025-08-18
-
粉末增材制造技术在掺铒石英光纤激光器中的应用研究
在光纤通信、激光加工及生物医疗等关键领域,高性能光纤激光器的需求持续攀升,而增益光纤作为其核心构成部件,其制造工艺直接决定器件的性能水平。传统制造方法虽能生产高质量增益光纤,但存在生产周期冗长、成本高昂及成分调控灵活性不足等显著局限。近期,PawelManiewski等人在《Optica》期刊发表的研究成果,提出了一种基于粉末增材制造的新型制备方案,为高性能增益光纤的研发开辟了全新路径。
2025-08-18
-
偏心仪在透镜及镜片加工中的应用解析
偏心仪在透镜及镜片加工领域中应用广泛,其核心作用在于通过精密检测与校准,确保光学元件的几何中心与光轴保持高度一致性,进而保障光学系统的成像质量与性能稳定性。具体应用如下:
2025-08-15